DESIGN CALCULATION ON BEAM DYNAMICS AND THZ RADIATION OF DELHI LIGHT SOURCE

V. Joshi*, J. Karmakar, N.Kumar, B. Karmakar, S.Tripathi, S. Ghosh, R. K. Bhandari, D. Kanjilal, Inter University Accelerator Centre (IUAC), New Delhi, India

U.Lehnert, Helmholtz Zentrum Dresden Rossendorf (HZDR), Dresden, Germany

Introduction

❖ Deliverables:

- Laser System to deliver "comb" laser pulses with variable time separation between 'spikes'
- ➤ Cu/Cs₂Te photocathode based 2.6 cell RF cavity coupled with solenoid to generate ~ 4 8 MeV micro-bunched e-beam having ~15pC/microbunch charge.
- ➤ Variable number of microbunches: 2 16
- ➤ Micro-bunch separation variable from 0.1mm to 2 mm.
- ➤ Tunable THz radiation from 1.5m compact PPM undulator ~0.4 < Krms < ~2 in Frequency range: 0.15THz 3THz

THz, emission scheme from super-radiant pre-bunched e-beam

~200 fs

BEAM OPTICS SIMULATIONS

Radiation Frequency (THz)	0.15	3
No. of microbunches	2	16
Charge per micro bunch (pC)	15	15
Accelerating Field (MV/m)	58.5	110
Energy (MeV)	4	8
Energy Spread (%)	1.1	0.43
FWHM (fs)	~750	~ 200
$\sigma_{y,x}$ (mm)	0.19, 0.275	0.175,0.25
Emittance, $\varepsilon_{x,y}$ (π mm-mrad)	3.7, 0.04	0.2, 0.01
Avg. Separation	6.6 ps	345 fs
Peak Current (Amperes)	20	75

- Minimize the size, energy spread and emittance of the e- beam
- ➤ Maximize the bunching factor of the micro bunched beam
- Minimize overlapping of the microbunch structure of the beam bunches starting from undulator entrance to exit
- Maximize the charge in an individual microbunch

REFERENCES

- [1] S.Ghosh et.al. *Nuclear Instruments and Methods in Physics Research B*, Vol. 402, Pages 358-363, https://doi.org/10.1016/j.nimb.2017.03.108
- [2] S. Ghosh et al., *Proc. of FEL 2014*, Basel, Switzerland, p. 596. [3] S. Ghosh et al., *Proc of IPAC 2016*, Busan, Korea, p. 748.
- [4] General Particle Tracker, http://www.pulsar.nl/gpt/index.html

SIMULATION CALCULATIONS OF THZ

- >C++ based Lienard Wiechert field solver developed.
- Track particles through the undulator and evaluate the position, momentum and acceleration at retarded times to find the electromagnetic fields at some observer point or a grid.

Acknowledgement: This work is supported by Board of Research in Nuclear Sciences (BRNS) and IUAC

*vipuljoshi92@gmail.com

-0.010 -0.005 0.000 0.005 0.010 0.015

MOP047

-0.010 -0.005 0.000 0.005 0.010 0.015