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Top-Level Features of ERL Architectures
• Motivation for ERL architecture: save money on RF drive while 

delivering bright high power beams
• ideal ERLs have Pbeam >> PRF; involve very high CW beam powers
• beam quality preservation and control of paramount importance

• ERLs are basically just time-of-flight spectrometers
• they exist to create specific conspiracies between time and energy
• longitudinal motion (“longitudinal match”) must be carefully controlled

• ERLs are non-equilibrium systems
• ERLs look like rings, but behave like injector chains 

• high power beam  “injection efficiency” (99.999+%) critical
• beam and lattice are different, and beam is not Gaussian

• beam and lattice may evolve independently, be mismatched
• Beam degrades at the target and then gets anti-damped.
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FEL Longitudinal Matching Scenario
Requirements on phase space:
• high peak current (short bunch) at FEL

• bunch length compression at wiggler using quads 
and sextupoles to adjust compactions

• “small” energy spread at dump
• energy compress while energy recovering
• “short” RF wavelength/long bunch, large exhaust 
dp/p (~10%)
get slope, curvature, and torsion right

(quads, sextupoles, octupoles)
• Note that this is a parallel-to-point

longitudinal match
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Nonlinear FEL Longitudinal Matching
As shown earlier – but with typical “real” bunch shapes
• RF curvature can degrade compressed bunch length
• Set nonlinear momentum compaction with sextupoles 

to compensate & linearize bunch
• Avoids use of harmonic RF (expensive/constrains aperture)

• Energy compression during recovery –
• “short” RF wavelength/ultimately long bunch (30o+), 

large exhaust dp/p (~10-15%)
get slope, curvature, and torsion right (quads, sextupoles, 

octupoles…) to match bunch to RF waveform.
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JLab FEL bunch compression and diagnostics
• The Jlab FEL operated with a bunch compression ratio of 17–25 using nonlinear compression –

compensating for LINAC RF curvature (up to 2nd order during acceleration and 3rd order during recovery).
• The RF curvature compensation is made with multipoles installed in dispersive locations of 180° Bates 

bend with separate function magnets - no harmonic RF
• Operationally longitudinal match relies on:

a. Longitudinal transfer function measurements R55, T555, U5555

b. Bunch length measurements at full compression (Martin-Puplett Interferometer)
c. Energy spread measurements in injector and exit of the LINAC
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Connecting R56 & T566 to M55

• R56 and T566 are validated via longitudinal transfer function 
measurements.

• Arrival phase is measured with a pillbox cavity + heterodyne receiver.
• Phase of the injector is modulated relative to the LINAC phase
• Essential ~ 15 % energy acceptance and ~  30 % phase acceptance
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ELBE – Martin-Puplett Interferometer

• Interferometer for ELBE –
proper Martin-Puplett
interferometer

• Wire-grid polarizers scaled 
down by factor 2 to allow 
shorter than 50 fs 
measurements

• Built with vacuum chamber to 
reduce air absorption
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MPI @U37 - Data Evaluation
• At IR/UV Upgrade interferometer data evaluation – bunch length 

extraction was made in frequency domain, NLSF + Gaussian 
beam assumption

• With ELBE MPI data frequency domain fit is often difficult

• Changed to data evaluation with time domain NLSF

• Always used all data points for fit

• Much more robust
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Energy Compression During Recovery

• Beam central energy drops, relative beam energy spread grows
• Recirculator and beam central energies must match to maximize acceptance
• Beam rotated, curved, torqued to match shape of RF waveform
• Maximum energy can’t exceed peak deceleration available from linac

• Corollary: entire bunch must precede trough of RF waveform
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Higher Order Corrections
• Without nonlinear corrections, phase space becomes 

distorted during deceleration
• Curvature, torsion,… can be compensated by nonlinear 

adjustments 
• differentially move phase space regions to match gradient required for 

energy compression

• Required phase bite is cos-1(1-DEFEL/ELINAC); at modest 
energy this is

>25o at RF fundamental for 10% 
>30o for 15%

• typically need 3rd order corrections (octupoles)
• also need a few extra degrees for tails, phase errors & drifts, irreproducible 

& varying path lengths, etc, so that system operates reliably

• In this context, harmonic RF very hard to use…
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Machine Topology for Multipass Machine
• At high energy, a telescopic match is better suited to the requirement for small 

energy spread but high peak current.
• User separated function arcs to accelerate in two pass up and two passes down.
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Longitudinal Matching Solution: Delivery to FEL

• Inject long, low momentum spread bunch
• Initially accelerate on rising portion of RF waveform
• Perform mild compression, full RF curvature compensation at mid-energy 

NOTE: intermediate stages of compression must be performed mid-way through 
acceleration cycle when using multistage compression in an ERL (if transport is 
common to both accelerated and recovered beams)

• Accelerate to full energy on falling portion of RF waveform to de-chirp 
beam to produce small final momentum spread

• Compress bunch length during transport to FEL
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Longitudinal Matching Solution: Energy Recovery

• Complete energy recovery while lasing 
• Edump < Einjection

• Multistage nonlinear energy compression during 
energy recovery 
• Curvature/torsion compensation
• provides small dp/p at dump
• Keeps Edump constant as FEL turns off/on
• Defines RF drive requirements (which are modest)
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Longitudinal Phase Space

ERL Workshop, Berlin Germany, September 16-20, 2019 15

Injected Linac 1: Exit Pass 
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Longitudinal Phase Space
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Longitudinal Phase Space
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Longitudinal Phase Space
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Arc 3: Exit Linac 2: Exit Pass 2



Longitudinal Phase Space
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Arc 4: Exit After FEL



Longitudinal Phase Space
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Arc 5: Exit Linac 2: Exit Pass 3



Longitudinal Phase Space
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Arc 6: Exit Linac 1: Exit Pass 3



Longitudinal Phase Space

ERL Workshop, Berlin Germany, September 16-20, 2019 22

Arc 7: Exit Linac 2: Exit Pass 4



Longitudinal Phase Space
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Arc 8: Exit Linac 1: Exit Pass 4



DarkLight Experiment

ERL Workshop, Berlin Germany, September 16-20, 2019 24

Fully inclusive 
detection of electron-
proton collisions to 
look for Dark Matter 
axions (bump hunt)
Uses internal hydrogen 
gas target.

• Energy 100 MeV 
• Current 5 mA
• Bunch length 3 psec
• Energy spread <0.1%
• Emittance <15 mm-mrad.
• Solenoid field 0.5 T



• Bunch is no longer compressed at the target.  
• Energy spread is very small, thus insensitive to multipoles.
• Desire fo low repetition rate to take advantage of time-of-flight in 

particle identification. 
• Can switch between quite different operational modes with only 

minor parametric changes
• e.g. cross-phasing of linac cavities/modules: change single phase 

setpoint and go from short bunch to small dp/p
• Can use short bunch setup to optimize longitudinal transfer map. 
• Can use two-pass setup to have very small energy spread. 
• Note: Thompson backscattering requires high charge with 

moderately short bunches. This setup could be very 
advantageous for that application as well.

DarkLight Longitudinal Match
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EIC Cooler ERL and CCR
• Need very long, small energy spread bunch with very high charge.
• Magnetized electron beam for higher cooling efficiency
• Repetition rate of bunches is 476.3 MHz.
• Assume high charge, low rep-rate injector (w/ harmonic linearizer acceleration)
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JLEIC BBU Cooler Specifications
• Energy 20–110 MeV 
• Charge 3.2 nC
• CCR pulse frequency 476.3 MHz
• Gun frequency 43.3 MHz
• rms Energy spread (uncorr.) 3x10-4

• Energy spread (p-p corr.) <6x10-4

• Bunch length (tophat) 3 cm (17°)
• Thermal (Larmor) emittance <19 mm-mrad 
• Cathode spot radius 3.1 mm
• Cathode field 0.05 T
• Normalized hor. drift emittance 36 mm-mrad
• Solenoid field 1 T
• Electron beta in cooler 37.6 cm
• Solenoid length 4x15 m
• Bunch shape beer can
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Voltage with 3rd Harmonic and phase and amplitude offsets
• If we want to accelerate a very long bunch and then stretch it out even 

more we can use 3rd harmonic cavities in the linac.
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Before going into the CCR, take out the slope using a 952.6 MHz de-chirper.
We can also put in a quartic correction if necessary by changing the amplitude



Conclusions
• ERL architecture is determined by the longitudinal design.
• Transverse design follows the longitudinal settings.
• For FELs one wants a high peak current:

• For small long wavelengths a parallel to point focus is optimal
• For short wavelengths a telescopic focus is better.

• Nuclear Physics applications do not need high peak current but 
need small relative energy spread.
• Can use either lattice of harmonic RF to get a good energy spread
• Low charge, high repetition rate is a better match to these applications.

• Electron Cooling applications need extremely long bunches and 
extremely small energy spread.
• Harmonic RF is almost required for such bunches.
• Microbunching and CSR are now the big challenges.
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Compaction Management
ARC M56 (m) T566 (m) W5666 (m)

1 0 0 0

2 -0.0295 -1.23 -9

3 0 0 0

4 +1.035 0 0

5 -0.282 -2.5 -10

6 0 0 0

7 -0.1 +2.5 0

8 0 0 0

LINAC Energy Gain (MV) Phase (Deg)

1 0.1800 -16

2 0.1950 -16

3 0.1800 +25

4 0.1950 +25

5 0.1950 204

6 0.1800 204

7 0.1950 163

8 0.1800 163



ERLs are time-of-flight spectrometers
• Exist solely to create conspiracies between phase and energy

• no closed orbit; may not be betatron stable/have “matched” beam envelopes 
beam and lattice are different (mismatch often advantageous)

• longitudinal match constrains system architecture
• need full suite of longitudinal diagnostics for both machine (lattice) and 

beam
• phase transfer function system (M55, T555)
• bunch length monitoring/noninvasive energy spread
• tomography to capture/correct nonlinear phase space distortion

• spectrometer-grade components
• perturbations at high energy anti-damp during recovery 

• aberration management critical: nonlinear modeling/diagnosis/control 
needed



Features of ERL Architectures (cont.)
• no equilibrium  stability a challenge

• CEBAF parity-quality beam  provides benchmark 
• high beam power, absence of equilibrium   CW is a game-

changer
• beam loss monitoring/suppression 

• beam quality generation and preservation:
• beam quality declines from cathode onward* ; “best” injected beam not 
necessarily “best” delivered beam

32

*unless emittance compensation implemented; can be applied at high  energy for, e.g. CSR 
management

• beam degrades at full energy  anti-damping makes things  worse during recovery 

• Recirculator/ERL  multiple beams/common transport (at least in linac!)
– creates challenges for monitoring & control
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180° Bates bend

 Really robust
 Really easy to operate (if it is instrumented)
 Really simple (if you think about it the right way)
 Good acceptance (>10% energy, 30-40 deg phase)
 Symmetry – aberrations corrections
 Match in/out with chromatically balanced telescopes
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(combined function magnets)

J. B. Flanz and C. P. Sargent, 
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180° Bates bend (1)
Path length change with kick;

Used to adjust the path 
length i.e. phase of the 
energy recovered beam

Kick(s)Kick(s)



180° Bates bend (2)
Path length change with kick;

Kick by quadrupole;

Kick by sextupole;

Due to dispersion created by 
first two dipoles;

Kick(s)


