

Metal and semiconductor photocathodes in HZDR SRF gun

Rong Xiang on behalf of the SRF Gun Group 19. Sep. 2019 ERL2019, Berlin

DRESDEN concept

Outline

- 1. Status of SRF gun-II
- 2. Photocathodes for HZDR SRF gun
 - Metal photocathodes: Cu, Mg
 - Semiconductor photocathodes: Cs₂Te, GaN
- 3. Summary and outlook

- user facility with ~5500h of beam time and an efficiency of >90% each year
- electron accelerator is based on superconducting Linac in CW operation
- average current of 1 mA, beam energy up to 40 MeV
- two injectors: 250 kV DC gun, SRF gun

• ELBE user requirements for SRF gun

user application	bunch charge	norm trans. emitt.	Final bunch length	beam size at IP	average current
THz radiation (100 kHz)	300 pC		300 fs		30 μΑ
Neutrons (100 kHz)	100-500 pC				10-50 μΑ
Positrons (500 kHz)	200 pC				100 μΑ
Radiation physics (100 kHz)	10 pC				1 μΑ
IR FELs (13 MHz)	77 pC	2.2 µm	< 1 ps		1 mA
CBS x-rays (10 Hz)	450 pC		1 ps	30 µm	4.5 nA

A.Arnold Poster WEPNEC08

1. Status of ELBE SRF gun-II

superradiant THz and neutron beamtime (TELBE, nELBE)

SRF-Gun

SC-LINAC

THz @ ELBE

neutron @ ELBE

1. Status of ELBE SRF gun-II

	Milestones of SRF gun II
Jun. 2010	cavity manufacture finish in JLab
Aug. 2014	commissioning at HZDR
Feb. 2015	first CW beam with Cu cathode
Nov. 2016	Mg cathode in operation
Mar./Jun. 2017	Cs ₂ Te (Mo) in gun
Since 2017	stable operation with Mg

1. Status of ELBE SRF gun-II

parameters of SRF gun II in operation

 $E_{acc} = 8 \text{ MV/m CW } (20 \text{ MV/m peak field on axis})$

E_{cathode}=12 MV/m (field on cathode)

 $I_{dark} \sim 30 \text{ nA } @8 \text{ MV/m}$

4 MeV kinetic energy, bunch charge < 0.4 nC

Keyword: NC cathode for SC cavity

Semiconductor photocathodes

- high risk of contamination
- vacuum demanding
- preparation system
- high quantum efficiency (QE)
- less laser power required

Metallic photocathodes

- good compatibility with Nb cavity
- robust, long lifetime
- fast response
- low QE
- high UV laser power required

Cathodes applied in SRF Gun-II

beam 200 nA and dark current 53 nA at 9 MV/m (23 MV/m peak)

a "Clean" (Cs-free) cathode for SRF gun

Metal (polycrystalline)	QE (%)	ф (eV)
Cu	10 ⁻⁶ - 10 ⁻⁵	4.6
Mg	10 ⁻⁶ - 10 ⁻⁴	3.6
Мо	10-6	4.5
Nb	10 ⁻⁶	4.3
Pb	10 ⁻⁶	4.25

Lide, D. R.. Properties of Solids, in: CRC Handbook of Chemistry and Physic, Internet Version 2005.

Boca Raton, FL: CRC Press; 2005, P. 124

S. Halas, Materials Science-Poland, Vol. 24, No. 4, 2006

✓ 0.1%-0.3% @ 258nm after laser cleaning

✓ Bunch charge up to 0.3 nC

- ✓ No multipacting problem
- ✓ acceptable dark current

? Thermal emittance

H.J.Qian et al., Appl. Phys. Lett. 97, 253504 (2010)

- ✓ Robust in SRF gun
- Replaced only due to vacuum issue in injector

Prepare Steps:

- Machine bulk plug of Mg (Goodfellow & MaTecK)
- Optical polishing
- Remove oxide layer & clean in cleanroom
- Install in transport chamber and check quality
- Cleaning with ps UV laser

Anode cathode window transport chamber

Laser cleaning set-up at transport chamber at SRF gun using the UV drive laser (100 mW, 100 kHz CW)

cleaning time: \sim 2 hours 12 µm x 12 µm step size, 100 ms dwell time

QE mapping with low laser power

Mg plug in cavity

Part of examples

Mo plug ϕ 10 mm x 8mm on Cu-stem Polished Mo surface R_a: 8 ~10 nm Cleaning and baking

Deposition Te +Cs: standard, co-evaporation

Transport to Gun

Proceedings of FEL2010, Malmoe, Sweden PhysRevSpecialTopics 13 043501

For SRF Gun I

- 35 Cs₂Te photo cathodes produced
- QEs of most fresh cathodes are 8% ~ 15%.
- 8 Cs₂Te ever worked in SRF gun I.
- Contribute 30% of the total dark current
- Thermal emittance (QE of 1%)
 0.6 ~ 0.7mm·mrad/r(mm).

Cathode #17.04.2012 Cs₂Te

- •fresh QE 8.5%, in gun 0.6%
- •beam time $\sim 2100 \text{ h}$
- •extracted charge > 264 C

For SRF Gun II

2015.02 the 1st Cs₂Te cathode produced field emission due to scratches and particles

Scratches and particles on the plug rim (size 200 µm level)

Defect in center of Cs₂Te film (size 20 μm)

Modify preparation chamber, improve plug quality check to solve paticle problem

before deposition

after deposition

in 2016, second try with Cs₂Te in SRF gun II 2 cathodes disappeared after two-week beam time

QE 1.7%, low dark current produced 200 µA beam

No QE, high dark current, cavity polluted Mo plug overheated T > 300°C two weeks later

Reason of cathode overheating

- Thermal expension coefficent
- Connection methodes

By A.Arnold

Influence of Cs₂Te tests to cavity

2. Photocathodes for HZDR SRF gun: new idea

OnGoing work-GaN(Cs)

P-GaN on sapphire

BMBF cooperation with Univ. Siegen, JG Mainz (HOPE2, BETH)

3. Summary and outlook

- Mg photocathodes operate successfully in SRF gun
 - Mg can reach high QE of 1~5×10⁻³
 - no multipacting and low dark current (<30 nA)
 - robust
- Medium / high currents require semiconductor photocathodes
 - Cs₂Te is still the choice for medium current (1 mA)
 - suitable substratum for better thermal contact: Cu
 - study new material (GaN)
- Photocathode handling for SRF gun application
 - careful quality check for cathodes
 - mechanic to avoid particle production

Thank you for your attention!

Thanks to the ELBE team and our cooperators!

