

OUTLINE

- History and Current Performance
- Upgrade Motivation
- 18GHz ECR2
- Magnetic Improvements
 - Hexapole Upgrade
 - Axial Field Upgrades
- Plasma Chamber Redesign
- Supporting Hardware Redesign
- Extraction Optics
- Expected Performance

ATLAS ECR ION SOURCES

- The Argonne Tandem Linac Accelerator System (ATLAS) has two ECR ion sources, ECR2 and ECR3.
- ECR2 is a room temperature AECR style ECRIS
 - Typically run in a multiple frequency mode up to 1100W
 - 2 solenoid magnets provide axial field
 - Open hexapole design to accommodate radial material introduction and pumping
- ECR3 is an all-permanent magnet ECRIS
 - Formerly the BIE100
 - Used primarily for 14C and gases
- ECR2 is the workhorse ion source at ATLAS

Mass Analyzer

ECR2 HISTORY AND PERFORMANCE

Are we due for an upgrade?

- Currently running well, but not well enough for the facility requirements moving forward
 - N=126 Factory being commissioned
- ECR2 was originally built in 1997
 - Designed for 10GHz & 14GHz 2-frequency operation
- Hexapole and injection iron upgrade in 2003
 - Raised injection B field to 2.0 T from 1.7 T
 - Raised wall B field to 0.98 T from 0.85 T
 - NdFeB magnet material and design improvements
 - Still fell short of the ideal 1.1T B_{rad} for 14GHz operation
 - Roughly a factor of 2 increase in beam intensities

IMPROVING FACILITY CAPABILITIES

Why upgrade a well functioning source?

- Upcoming ATLAS experimental campaigns require increase in intensity capabilities from ECR2
 - Typically, middle to high charge state requirements
 - Table assumes 60% source to target. 40% is typical.
- Upgrade must retain room temperature designs
 - Improve hexapole design
 - Consider different permanent magnet materials
 - Improve injection iron design
- Optimize 14GHz and support 18GHz operation
 - Most other facilities' 18GHz improvement results are sufficient for our intensity goals

Beam	Current	Desired	
Species	Performance	Performance	
Ca-48	2puA	2puA	
Ti-50	0.9puA	1puA	
Xe-136	0.7puA	5puA	
U-238	<0.1puA	1puA	

SCALING LAWS FOR 18 GHZ ECR2

What needs to change?

Scaling laws for performance have driven design decisions

$$-I_{peak} \propto f_{RF}^{2}$$

$$-\frac{B_{rad}}{B_{ECR}} = 2$$

$$-\frac{B_{inj}}{B_{ECR}} = 4$$

$$-V_{ext} \propto I_{tot}^{2/3} \propto f_{RF}^{4/3}$$

Frequency	$\nabla \mathbf{B}_{ECR}$	B_{min}/B_{ECR}
14.5 GHz	5.87	0.695
18 GHz	7.45	0.560

- Must preserve appropriate magnetic gradients at the resonant surface to avoid plasma instabilities
 - ∇B_{ECR} greater than 5.8 T/m and a B_{min}/B_{ECR} less than 0.7
 - Fully adjustable solenoid magnets to dial in fields and stability

What permanent magnet material?

- ECR2 presently uses MCE N5064
- Originally down to two choices
 - Vacodym 745 DHR & MCE N5064

Material	H _{cB,min} (kA/m)	$H_{cJ,min}(kA/m)$
Vac 745 DHR (2mm depth)	1046	1631
Vac 745 HR	1065	1115
MCE N5064	1050	1114

- Main factors for material consideration
 - High H_{cB} (coercivity) for high B field
 - High H_{c,I} (intrinsic coercivity) to resist demagnetization
 - High temperature resistance
- We later found that Vacodym 745 DHR is a surface treatment of Vacodym 745 HR
- How does Vacodym 745 HR perform?
 - Bulk material available
 - Highest coercivity among the materials discussed
 - Consider the DHR treatment if demagnetization is a large concern after simulations

MAXIMIZE B_{rad} AND AVOID DEMAGNETIZATION

- Many iterations of magnet shapes and magnetization vectors considered
- Best design utilized 4 segments per magnet bar
- 2D simulations in FEMM resulted in a B_{rad} of 1.22T
- This design was then exported to CST for 3D simulations
 - First without contributions from the solenoid magnets, then with them
 - Finally analyze the demagnetization potential of the magnets

3D without solenoid magnet contributions

- B_{rad} = 1.19 T at source midplane
- Running the 3D simulation for the magnet bars without solenoid contributions exposed potential problem areas
 - Color on plot indicates >1100kA/m
 - Arrows show direction of field primarily against magnetization angle
- Next, simulate "effective" geometry with removed demagnetized sections
 - Solenoid H field contributions will only make things worse for demagnetization
 - Cut out expected demagnetized sections of magnet bar
 - » Assumed to not contribute to the field

3D without solenoid magnet contributions

- Second iteration
 - No demagnetization field with chamfers added throughout the problem areas of magnet
- B_{rad} = 1.17 T at source midplane
- Maximum H field less than 1.1E6 A/m
- No need to do additional cut outs
 - Onto the 3D model with solenoid contribution
 - Will confirm with additional simulation that demagnetizing field does not exceed 1.1E6 A/m

3D with solenoid magnet contributions

- Simulated new hexapole with injection and extraction solenoids at 525A
 - B_{rad} = 1.18T at source midplane

Took H field slice at max H field axial position.

• Portions of magnet are over 1.1E6 A/m

Must look at demagnetization field against magnetization angle

3D with solenoid magnet contributions

- Maximum H field along the demagnetization vector is 1.10E6 A/m
 - H_{c.I min} is 1.15E6 A/m
 - This is under, but barely under, where demagnetization occurs at room temperature
 - Will carry out the diffusion treatment to give us the temperature and demagnetization capabilities of the 745 DHR in the concerning areas near the surface of the magnet bar

3D with solenoid magnet contributions

- Last closed surface ~1.0T
 - Was 0.85T before upgrade
- Large improvement over current hexapole
- Added bonuses of temperature resistance and demagnetizing field resistance

NEW PLASMA CHAMBER

Some old, some new designs incorporated

- Expand OD to accommodate new design
 - 0.5-inch increase for larger magnets
- Aluminum and SS bulk material
 - Explosion bonded/welded together
 - Al portion where plasma and heat load are located
 - SS portion where multiple welds are needed
 - SS on extraction side
 - Issue with consistent weld quality when using only aluminum (leaks)
- Cover plate
 - maintain current OD
 - Remove some previously used o-rings and replace them with screws that have integrated o-rings

NEW INJECTION IRON DESIGN

Novel materials help

- Addition of Vanadium Permendur on injection iron
 - Cobalt-iron alloy with small % vanadium
 - High saturation
 - High permeability
- Rework the injection iron for WR62 and WR75 only
- Leaves room for a thinner but still adequate BN insulator between the biased disk and injection iron
- This greatly improves the injection field

SUPPORTING UPGRADES

- Need to revise high voltage insulation throughout
 - Last slide showed injection adjustments
- Requires new extraction electrode
- Requires revision to 1010 steel in extraction region
- Requires higher voltage extraction to support increased intensity
- Requires magnet cooling upgrade
 - New DI water skid
- Must look at ion optics of the immediately downstream low energy beam transport line

ION OPTICS

Pre-upgrade conditions

- 14kV Extraction
- 100uA 16/4+
- -1kV Puller
- Solenoids and Glaser contributions
- 100% transmission to faraday cup downstream of analyzing magnet
- This configuration is not sufficient the for increased intensities of the upgrade

ION OPTICS 2024 Upgrade

- 14kV Extraction, 1mA 16/4+
- -1kV Puller
- 525A Solenoids and Glaser contributions
- Added in new einzel lens
 - 81% transmission without einzel lens
- Beam lost after dipole magnet in drift region (space charge effects)
- 100% transmission to FCF101 with new einzel lens before dipole magnet
- Successfully simulated up to 20kV extraction and 3mA at 100% transmission to FCF101

2.94E-3 A, crossover at Z= 387, R=11.66 mesh units, Debye=0.301 mesh units OV 100 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 IGUN-7.053(C)R.Becker - RUN 02/16/24*009, file=m3 20k1.IN 2.98E-3 A. crossover at Z= 1, R=106.95 mesh units i»; IGUN ECR2 220A Glazer 200 150 50 IGUN-7.053(C)R.Becker - RUN 02/16/24*010, file=m3 20k2.IN 2.98E-3 A, crossover at Z= 1544, R=148.27 mesh units i»; IGUN ECR2 220A Glazer 150 100 50 0 900 1000 1100 1200 1300 1400 1500 IGUN-7.053(C) R.Becker - RUN 02/16/24*011, file=m3 20k3.IN 2.98E-3 A, crossover at Z= 1544, R=117.04 mesh units I»: IGUN ECR2 200 100 50 IGUN-7.053(C) R.Becker - RUN 02/16/24*012, file=m3 20k4.IN i»; IGUN ECR2 47 to 71 with Einzel 11000 V IGUN-7.053(C) R.Becker - RUN 02/16/24*014, file=m3 20k6.IN 2.98E-3 A, crossover at Z= 199, R=18.42 mesh units I»; IGUN ECR2 71 to 117.61 after Einzel

500

Up=20012.9, Te=3.0 eV, Ui=5.0 eV, mass=16.0, Ti=1.0 eV, Usput=0 V

800

IGUN-7.053(C) R. Becker - RUN 02/16/24*015, file=m3 20k7.IN

900

700

200

2024 ECR2 SUMMARY & EXPECTATIONS

- ECR2 at ATLAS is due for an upgrade and beam intensity requests are increasing
- An upgrade plan to support 18GHz operation has been established and approved
- A new hexapole was designed and simulated for performance and demagnetization
- A new plasma chamber was designed for the new hexapole magnet bars
- Iron and vanadium permendur components were designed to maximize axial B field
- Ion optics simulations were completed, demonstrating the need of an einzel lens for high intensities

Parameter	Current	Upgrade
$\overline{\mathrm{B}_{\mathrm{inj}}}$	1.85 T	2.44 T
B_{\min}	0.34 T	0.36 T
B_{ext}	0.96 T	1.00 T
$\mathrm{B}_{\mathrm{last}}$	0.85 T	1.00 T
Coil currents	500 / 500 A	525 / 525 A
$\mathrm{B}_{\mathrm{rad}}$	0.96 T	1.18 T
Plasma chamber radius	38.1 mm	38.1 mm
Plasma chamber length	297 mm	297 mm
Hexapole inner radius	42.4 mm	42.4 mm
Hexapole outer radius	74.7 mm	79.7 mm

