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OUTLINE
▪ History and Current Performance

▪ Upgrade Motivation

▪ 18GHz ECR2 

▪ Magnetic Improvements
— Hexapole Upgrade
— Axial Field Upgrades

▪ Plasma Chamber Redesign

▪ Supporting Hardware Redesign

▪ Extraction Optics 

▪ Expected Performance
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ATLAS ECR ION SOURCES
▪ The Argonne Tandem Linac Accelerator System (ATLAS) has two ECR ion sources, ECR2 

and ECR3.

▪ ECR2 is a room temperature AECR style ECRIS
— Typically run in a multiple frequency mode up to 1100W
— 2 solenoid magnets provide axial field
— Open hexapole design to accommodate radial

material introduction and pumping

▪ ECR3 is an all-permanent magnet ECRIS
— Formerly the BIE100
— Used primarily for 14C and gases 

▪ ECR2 is the workhorse ion 
source at ATLAS
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ECR2 HISTORY AND PERFORMANCE

▪ Currently running well, but not well enough for the 
facility requirements moving forward
— N=126 Factory being commissioned

▪ ECR2 was originally built in 1997 
— Designed for 10GHz & 14GHz 2-frequency operation

▪ Hexapole and injection iron upgrade in 2003
— Raised injection B field to 2.0 T from 1.7 T
— Raised wall B field to 0.98 T from 0.85 T

— NdFeB magnet material and design improvements
— Still fell short of the ideal 1.1T Brad for 14GHz operation

— Roughly a factor of 2 increase in beam intensities

Are we due for an upgrade?
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IMPROVING FACILITY CAPABILITIES

▪ Upcoming ATLAS experimental campaigns require 
increase in intensity capabilities from ECR2
— Typically, middle to high charge state requirements
— Table assumes 60% source to target. 40% is typical.

▪ Upgrade must retain room temperature designs
— Improve hexapole design 
— Consider different permanent magnet materials
— Improve injection iron design 

▪ Optimize 14GHz and support 18GHz operation
— Most other facilities’ 18GHz improvement results are sufficient 

for our intensity goals

Why upgrade a well functioning source?

Beam 
Species

Current 
Performance

Desired 
Performance

Ca-48 2puA 2puA
Ti-50 0.9puA 1puA

Xe-136 0.7puA 5puA
U-238 <0.1puA 1puA
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SCALING LAWS FOR 18 GHZ ECR2 

▪ Scaling laws for performance have driven design decisions
— 𝐼𝑝𝑒𝑎𝑘 ∝ 𝑓𝑅𝐹

2

—
𝐵𝑟𝑎𝑑

𝐵𝐸𝐶𝑅
= 2

—
𝐵𝑖𝑛𝑗

𝐵𝐸𝐶𝑅
= 4

— 𝑉𝑒𝑥𝑡 ∝ 𝐼𝑡𝑜𝑡
2/3

∝ 𝑓𝑅𝐹
4/3

▪ Must preserve appropriate magnetic gradients at the resonant 
surface to avoid plasma instabilities
— ∇BECR greater than 5.8 T/m and a Bmin/BECR less than 0.7

• Fully adjustable solenoid magnets to dial in fields and stability

What needs to change?

Frequency 𝛁BECR Bmin/BECR 
14.5 GHz 5.87 0.695
18 GHz 7.45 0.560
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HEXAPOLE 
What permanent magnet material? 

▪ We later found that Vacodym 745 DHR is a surface treatment of Vacodym 745 HR 

▪ How does Vacodym 745 HR perform?
— Bulk material available
— Highest coercivity among the materials discussed
— Consider the DHR treatment if demagnetization is a large concern after simulations

Material HcB,min (kA/m) HcJ,min (kA/m)
Vac 745 DHR (2mm depth) 1046 1631
Vac 745 HR 1065 1115
MCE N5064 1050 1114

▪ ECR2 presently uses MCE N5064 

▪ Originally down to two choices 
— Vacodym 745 DHR & MCE N5064

▪ Main factors for material consideration
— High HcB (coercivity) for high B field
— High HcJ (intrinsic coercivity) to resist demagnetization
— High temperature resistance 
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MAXIMIZE 𝑩𝒓𝒂𝒅 AND AVOID DEMAGNETIZATION
▪ Many iterations of magnet shapes and magnetization vectors considered
▪ Best design utilized 4 segments per magnet bar 
▪ 2D simulations in FEMM resulted in a Brad of 1.22T
▪ This design was then exported to CST for 3D simulations

— First without contributions from the solenoid magnets, then with them
— Finally analyze the demagnetization potential of the magnets
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▪ Brad = 1.19 T at source midplane

▪ Running the 3D simulation for the magnet 
bars without solenoid contributions 
exposed potential problem areas
— Color on plot indicates >1100kA/m 
— Arrows show direction of field primarily 

against magnetization angle

▪ Next, simulate “effective” geometry with 
removed demagnetized sections
— Solenoid H field contributions will only make 

things worse for demagnetization
— Cut out expected demagnetized sections of 

magnet bar
» Assumed to not contribute to the field

2024 HEXAPOLE 
3D without solenoid magnet contributions
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▪ Second iteration 
— No demagnetization field with chamfers added throughout the problem areas of magnet

▪ Brad = 1.17 T at source midplane

▪ Maximum H field less than 1.1E6 A/m
▪ No need to do additional cut outs 

— Onto the 3D model with solenoid 
contribution

— Will confirm with additional
simulation that demagnetizing field
does not exceed 1.1E6 A/m 

2024 HEXAPOLE 
3D without solenoid magnet contributions
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2024 HEXAPOLE 
3D with solenoid magnet contributions
▪ Simulated new hexapole with injection and 

extraction solenoids at 525A
• Brad = 1.18T at source midplane

▪ Took H field slice at max H field axial position
• Portions of magnet are over 1.1E6 A/m
• Must look at demagnetization field against 

magnetization angle
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1.10E6 A/m max

2024 HEXAPOLE 
3D with solenoid magnet contributions
▪ Maximum H field along the demagnetization vector is 1.10E6 A/m

— HcJ,min is 1.15E6 A/m
— This is under, but barely under, where demagnetization occurs at room temperature
— Will carry out the diffusion treatment to give us the temperature and demagnetization capabilities of 

the 745 DHR in the concerning areas near the surface of the magnet bar
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2024 HEXAPOLE 
3D with solenoid magnet contributions
▪ Last closed surface ~1.0T

— Was 0.85T before upgrade

▪ Large improvement over current hexapole
▪ Added bonuses of temperature resistance and 

demagnetizing field resistance
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NEW PLASMA CHAMBER
Some old, some new designs incorporated

▪ Expand OD to accommodate new design
— 0.5-inch increase for larger magnets

▪ Aluminum and SS bulk material
— Explosion bonded/welded together
— Al portion where plasma and heat load are located
— SS portion where multiple welds are needed 

— SS on extraction side
— Issue with consistent weld quality when using only 

aluminum (leaks)

▪ Cover plate
— maintain current OD
— Remove some previously used o-rings and replace 

them with screws that have integrated o-rings

SS

Al
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NEW INJECTION IRON DESIGN
Novel materials help

▪ Addition of Vanadium Permendur on 
injection iron
— Cobalt-iron alloy with small % vanadium
— High saturation
— High permeability 

▪ Rework the injection iron for WR62 
and WR75 only

▪ Leaves room for a thinner but still 
adequate BN insulator between the 
biased disk and injection iron 

▪ This greatly improves the injection field
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SUPPORTING UPGRADES
▪ Need to revise high voltage insulation throughout

— Last slide showed injection adjustments

▪ Requires new extraction electrode 

▪ Requires revision to 1010 steel in 
extraction region

▪ Requires higher voltage extraction to 
support increased intensity

▪ Requires magnet cooling upgrade
— New DI water skid

▪ Must look at ion optics of the 
immediately downstream low energy 
beam transport line
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Pre-upgrade conditions
ION OPTICS

▪ 14kV Extraction

▪ 100uA 16/4+

▪ -1kV Puller

▪ Solenoids and Glaser contributions

▪ 100% transmission to faraday cup 
downstream of analyzing magnet

▪ This configuration is not sufficient the for 
increased intensities of the upgrade
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2024 Upgrade
ION OPTICS

▪ 14kV Extraction, 1mA 16/4+

▪ -1kV Puller

▪ 525A Solenoids and Glaser contributions

▪ Added in new einzel lens 
— 81% transmission without einzel lens 

▪ Beam lost after dipole magnet in drift region 
(space charge effects)

▪ 100% transmission to FCF101 with new einzel 
lens before dipole magnet

▪ Successfully simulated up to 20kV extraction 
and 3mA at 100% transmission to FCF101



2024 ECR2 SUMMARY & EXPECTATIONS
▪ ECR2 at ATLAS is due for an upgrade and beam 

intensity requests are increasing

▪ An upgrade plan to support 18GHz operation has 
been established and approved

▪ A new hexapole was designed and simulated for 
performance and demagnetization

▪ A new plasma chamber was designed for the new 
hexapole magnet bars

▪ Iron and vanadium permendur components were 
designed to maximize axial B field

▪ Ion optics simulations were completed, 
demonstrating the need of an einzel lens for high 
intensities

Parameter Current Upgrade
Binj 1.85 T 2.44 T
Bmin 0.34 T 0.36 T
Bext 0.96 T 1.00 T
Blast 0.85 T 1.00 T
Coil currents 500 / 500 A 525 / 525 A
Brad 0.96 T 1.18 T
Plasma chamber radius 38.1 mm 38.1 mm
Plasma chamber length 297 mm 297 mm
Hexapole inner radius 42.4 mm 42.4 mm
Hexapole outer radius 74.7 mm 79.7 mm
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