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Introduction

CERN accelerator chain
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Introduction
CERN accelerator chain

Machine | Type | Year | Energy | Bakeout | Pressure(Pa)| Length |  Particles
Linac, Booster, ISOLDE, PS, n-TOF and AD Complex 2.6 km!
LINAC 2 linac 1978 50 MeV | lon pumps 107 40 m p
ISOLDE electrostatic 1992 60 keV - 10 150 m ions: 700 isotopes
REX-ISOLDE linac 2001 3 Meviu partly 109- 100 20m and 70 (92) elements
LINAC 3 linac 1994 4.2 MeV/u | lon pumps 107 30m ions
LEIR accumulator | 1982/2005 | 72 MeV/u | complete 1070 78 m pbar, ions
PSB synchrotron 1972 |1-1.4 GeV | lon pumps 107 157 m P, ions
PS synchrotron 1959 28 GeV | lon pumps 107 628 m P, ions
AD decelerator ? 100 MeV | complete 10 188 m pbar
CTF3 complex linac/ring 2004-09 partly 10® 300m e
PSto SPSTL Transferline| 1976 26 GeV - 10 ~1.3 km P.ions
SPS Complex 15.7 km!
SPS synchrotron 1976 Extractions 107 7 km
SPS North Area Transfer line 1976 ~1.2km
SPS West Area Transferline| 1976 | 450 GeV ) PP ~ 1.4 km p, ions
SPSto LHC T12/8 Line Transfer line | 2004/2006 2x 2.7 km
CNGS Proton Line Transferline| 2005 ~730m
LHC Accelerator ~109 kim !
LHC Arcs (Beam x2, Magnets & QRL insul.) - 2 x (2 x 25 km)
LSS RT separated beams . 2 x 3.2 km
55 RT recombination B L T L N v p, ions
Experimental areas ~180 m
Beam Dump Lines TD62/68 Transferline| 2006 7 TeV - 10° 2x720m
High Vacuum ~20 km
UHV wiwo NEG ~57.5 km ~128 km!
Insulation vacuum ~ 50 km
Accelerator
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Introduction
CERN accelerator chain

* CERN runs a wide range of accelerators

- Small: LEIR with a circumference of 80 m
- Very large: LHC with a circumference of 27 km

* The basic vacuum requirements
- Depend more on beam performance than on size

- With increasing beam energy and intensity,
dynamic effects dominate

¢ Exception:
low energy ion accelerators are also dominated by dynamic
effects

* Higher beam energy means larger size
- Requires a trade-off between performance and cost
- Higher demand on integration and logistics
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Vacuum In the accelerators
Evolution of requirements (1/2)

Vacuum aims to reduce beam-gas interaction which
IS responsible for:

* Machine performance limitations
- Reduction of beam lifetime (nuclear scattering)
- Reduction of machine luminosity (multiple coulomb scattering)
- Intensity limitation by pressure instabilities (ionization)
- Electron (ionization) induced instabilities (beam blow up )

- Magnet quench i.e. transition from the superconducting to the
normal state
= Heavy gases are the most dangerous

* Background to the experiments
- Non-captured particles which interact with the detectors

- Nuclear cascade generated by the lost particles upstream the
detectors
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Vacuum In the accelerators
Evolution of requirements (2/2)

Beam vacuum pipes are designed to:
* Minimise beam impedance and HOM generation
* Optimise beam aperture
* Intercept heat loads (cryogenic machines)

- Synchrotron radiation (0.2 W.m* per beam)

- Energy loss by nuclear scattering (30 mW.m- per beam)

- Image currents (0.2 W.m per beam)
- Energy dissipated during the development of electron clouds

= Intercept most of the heat load, 1 W at 1.9 K requires
1 kW of electricity
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L HC sectorisation
LHC layout: arcs and LSS

- 8 arcs and 8 straight sections
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LHC sectorisation
LSS vacuum sectorisation

=

o~ 70% of the

' sector valves

isolate a cold

sector from a
warm one

303 sector
valves in the
LHC

Vacuum
instrumentation

Sectorisation modules

Mobile turbo
molecular
pumping station
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L. HC sectorisation
Insulation vacuum sectorisation

I Magnet vacuum barriers = Jumper vacuum barriers |] Cryogenic line vacuum barriers

ﬁ- vatuum jacket _ _ _ _ _ _ ]:

M;gmh:awu;vessél
QFR PR QLIE QI3E QUBE QIR QPR QIIE QBE QISR QTR QMR O3IR O33R Q33 BIL Ol 7L (5L Q3L Q2L Q9L QI7L QI QI QIIL 9L L
* VVacuum barriers
- 104 for the magnets

- 64 for the cryogenic lines
- 272 for the jumpers (link between QRL and magnets)
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LHC beam vacuum
Cold beam vacuum

* Cold beam vacuums (1.9 K)

e 2x2.8kmx 8 (arcs) and in all LSS standalone cryo-
magnets

* Non-baked beam vacuum
= 2-3 weeks pumping time (104 Pa) before cool down
* Pressure lower than 10-1° Pa after cool down @ 1.9 K

* |[nnovating conceptual design with a “beam screen”

- Radically different design between the arcs and the RT sections
- Beam screen operated between 5 and 20 K

COOQOLING TUBES

woecrs  ® 1ntercept most of the heat load
pavscreey @ Cryvopumping ensures the beam lifetime

B * Holes in the beam screen allow the transfer of
desorbed molecules to the magnet cold bore surfaces
where these can no longer be re-desorbed

PHOTONS

SCATTERED PHOTONS

@

PUMPING SLOTS

= 4/ MAGNET COLD BORE
19K
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LHC beam vacuum
Cold beam vacuum at 4.5 K

Saturated vapour pressure from Honig and Hook (1960)
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LHC beam vacuum
Cold beam vacuum at 4.5 K

Saturated vapour pressure from Honig and Hook (1960)
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LHC beam vacuum
Interconnecting the beam lines
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LHC beam vacuum
LSS beam vacuum

* 6 km of RT beam vacuum except standalone cryo-
magnets

* For each sector (twin or combined beams)

- 2 weeks for bake-out preparation

- 1 week for bake-out and NEG coating activation
* Bake-out of beam vacuum

- 230°C for NEG coated chambers

- 320°C for vacuum instrumentation

* Extensive use of NEG coatings
= Baked-out allows the activation of NEG coatings

e Pressure lower than 1019 Pa after activation
= Pressure reading limited by outgassing of the gauge port

) Accelerator
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LSS beam vacuum
Completed LSS vacuum sectors

* |on pumps to avoid ion instability by pumping noble gasses and
CH, and to ensure the safety interlocks

* Sector valves to prevent saturation of the NEG coating when
warming up the cryo-magnets

) Accelerator
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LHC beam vacuum
LSS beam vacuum

* The LSS in a few numbers
- Overall length: ~6000 m
- Beam components (collimators, instrumentation, RF...): >330
- Vacuum sectorisation modules (twin+combined): 191
- Bellows modules w/wo instrum. (gauges, pumps): 1780
- NEG coated drift space vacuum chambers: ~2000
- Pumps & Instrumentation:
¢ 780 ion pumps
¢ 1084 Pirani and cold cathode Penning gauges and 170 Bayard-Alpert gauges

e |nstallation rate:

- 305 meters installed in January’07
- Installation completed in May’08
%= ~100 meters per week !
¢ Installation of supports and chambers
¢+ Alignment & Interconnection with bellows modules
¢
¢

Pump down & leak detection
Installation & testing of bake-out
Bake-out & NEG coating activation
%~ 8 sectors re-opened for consolidation

<&

Accelerator
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LSS beam vacuum
LSS installation overview
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LHC beam vacuum
Detectors beam vacuum

* Integration: Vacuum installation follows detector closure
- “Bad surprises” are not acceptable

- Temporary supporting and protections are required at each stage of the
installation

* Reliability
- Leak detection and bake-out testing is compulsory at each step of the
Installation since vacuum pipes get encapsulated in the detector
* Availability
- Detector installation imposes the “speed” and sequence of the installation
* Performances

- Vacuum (<10%° H,.m3), HOM, impedance and alignment requirements must be
fulfilled
* Engineering
- Beryllium and aluminum material used since “transparent” to the particles
which shall escape from the collision point of the detectors

- Bake-out innovative solutions to fit with the limited space available between
vacuum pipes and the detector

) Accelerator
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LHC beam vacuum
Detectors beam vacuum-ATLAS

Vacuum technician
installing part of the
beampipe support

VA vacuum beam pipe |
installed before closure of

the endcap
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LHC beam vacuum

Detectors beam vacuum-CMS

CMS endcap
pipe
installation

" electromagnetic
_ calorimeter

1 hadronic

-~ calorimeter

Schematic Vacuum pipe installed close to
view of the the TAS absorber

CMS
detector
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LHC beam vacuum
Detectors beam vacuum-CMS
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LHC beam vacuum
Installation & Logistics

* Resource management

- Resources must be ready but the installation speed is fixed by the available
slots i.e. previous installation step must be completed

- Parallelism has to be started to cope with delays
- Co-activities with the hardware commissioning need to be solved

* Material management & handling
- Components need to be:
¢ Tested at the surface
¢ Transported into the tunnel right on time (limited underground storage)
* At the right place
* With the appropriate orientation
- Logistic efforts per week (installation speed: 100 m/wk)
~ 25 vacuum pipes (~7m in length)
60 supports
10 pallets (bellows modules, tooling, bake-out material)
Bake-out regulators (x3), pumping stations (x3), leak detector & RGA

* |Independent handling of the non-conformities
Accelerator
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| HC Insulation vacuum

* The insulation vacuum is a high vacuum
- Between the inner cold cryogenic lines and the outer envelope
- Between the cryomagnet and its cryostat
= Both are wrapped with super insulation layers

* Before the cool down, this vacuum is pumped out with
mobile and fixed turbo molecular pumping stations
down to a pressure in the 101 Pa

* The cool down will bring a huge additional pumping of
the water which is the dominant gas in this pressure
range. Then:

- The mobile pumping units are removed

- The fixed pumping station remain in place in order to pump the
gasses during the warming up or the small helium leaks

) Accelerator
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LHC insulation vacuum
Vacuum system layout in the Arcs

SCHEMATIC OF LHC ARC BEAM & INSULATION VACUUM.

JUMPER VACUUM BARRIER
(EVERY JUMPER)
HELIUM QRL VACUUM BARRIER CRYOGENIC PIPING What needs to be
DISTRIBUTION (EVERY 428 m)
LINE (QRL) leak tested ?
TV 4
|
—L s +» Welds between insulation

vacuum & beam vacuum

| I | [ [ | I | I | .
\ \ \ - 1 - . — — - ]
[ T | | | / | | [ | | | | | | = .:. Welds between hellum
- - - lines & insulation vacuum
CRYOMAGNETS
5| DPOEL | DPOE2 | DIPOLES % Elastomer joints between
CRYOMAGNET VACUUM BARRIER BEAM VACUUM air & insulation vacuum
(EVERY 214 m) TUBES
53,5 mHALF CELL
VACUUM SECTOR CHARACTERISTICS | CRYOMAGNETS QRL BEAM VACUUM
VOLUME () 80 85 24
LENGTH (m) 3 214 428 2796
MLI AREA (m?/m cryostat) 200 140
NUMBER OF VACUUM SECTORS (/grc) 14 7 1+1
] Accelerator
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LHC insulation vacuum
Distribution of leaks by sizes
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L HC Insulation vacuum
L eaks as a function of time
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LHC insulation vacuum
Operational aspects

* Three types of vacuum problems are expected:
- Helium leaks inside the insulation vacuum
= Not cryopumped = vacuum relies on the fixed turbo molecular
pumping stations
= P>10 Pa will lead to an interlock to the cryogenic system.
- Leaks between the air (tunnel) and the insulation vacuum
= Same as for previous case

= Ice blocks can also occur inside the insulation vacuum
Increasing the heat losses

- Leak between the insulation and beam vacuum — can occur
only in the magnets
= Helium will leak into the beam vacuum
* Small leaks will only cause troubles for leak detections

* Big leaks will result in an increase of the beam-gas scattering
leading to a magnet quench

] Accelerator
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LHC beam transfer lines
Injection lines

T18: Mainly bending magnets
and a constant slope

T12: Change of slopes and
straight sections...
Downstream part had to
wait until the completion
of the magnet
transportation

| TI8
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The main challenges :

» Russian contribution to the LHC Project
= magnets and vacuum system manufactured
and installed by BINP Novosibirsk

» Space restrictions when the transfer lines arrives
in the main LHC tunnel

» Survey of the vacuum chambers was an issue due
to the vertical and horizontal bending

EPAC’'08, 23-27 June, Genoa (IT) —J.M. Jimenez, CERN
Vacuum Group

LHC beam transfer lines
Injection lines

The transfer lines in a few key numbers:

» 2 x 2.7 km in length, chamber OD from
212 mm (SPS) to 63 mm (LHC)

» Bellows & pumping ports 1315

» Chambers (incl. magnets) 1240

» Supports ~1200
» Beam Positioning Monitors 120
»lon pumps & gauges 150
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L HC beam transfer lines
Dump lines
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The transfer lines in a few words:
» The beam energy i.e. 362 MJ/beam @ 7 TeV is enough
to melt 500 kg of copper, is equivalent to the energy of a
uxes 400 tons TGV @ 150 km/h !
L gy > To avoid the instantaneous melting of the dump
cwes Josost 2o R absorbers, the beams have to be diluted.
S ue g > A spiral path is obtained by a combined vertical and
. | horizontal deflection resulting in beam pipes of
N increasing diameters up to 600 mm upstream of the

AT 16 8
N beam dump bloc !
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L HC beam transfer lines
Dump lines

Ejected beam

Ejected beam installed above the two circulating beams

Sector valve Ejection
50x 400 I/s ion on dump line Septum
pumps magnets

600 mm beam
pipes - last 100 m
before the dump

absorber

22 1il:2008
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Controls & Monitoring
—J The “distributed” controls approach

roup

* |ncreasing accelerator size and emergence of mobile equipment
- Lengths of vacuum sectors, distances from access point
= “Local control” has no longer any meaning

* Have the control means close to the process

- e.g. embarked microcontrollers on mobile pump stations and
on mobile bake out regulation controllers

* Connect equipment using a fieldbus

- To reduce cabling cost
* Allow for portable control devices

- A portable PC in LHC, connected via WiFi
* Use operational models

- Make supervision, logging and alarms software independent
from equipment manufacturer

) Accelerator
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Controls & Monitoring
The “distributed” controls approach
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Controls & Monitoring

Vacuum Supervision Interface
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Upgrade campaign of the control and monitoring interfaces
launched in 2002 for all CERN accelerators
- PLC based interfaces, same concept for all accelerators
- Vacuum pumps, valves, instrumentation and alarms can
be accessed remotely and controlled if required
- Actions and status are stored in order to allow post-mortem
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Closing Remarks

* The operation of the LHC will challenging

- In the insulation vacuum, by:
¢ Helium leaks

- In the beam vacuum, by:
* The expected dynamic effects at high intensities
¢ The staging of the collimators
¢ The pressure rise induced by the collimator halos
¢ The helium leaks
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Closing remarks
He Leak Rate with Risk of Quench

Time to provoke a quench

= 1 year of operation ~ 150 days

Helium leak rate
above 5 107 Torr.l/s
shall be detected to

avoid the risk of a

150
\ \ =— Nominal
120 = 1/3 of nominal

=—1/10 of nominal

(e}
o
|

Time in presence of He leak (days)

gquench ! 60 -
30
0 v ‘
1.E-07 3 MO IS 12 g 1.E-05
e | OWer Ieak rate - He leak rate at 300 K (Torr.l/s)
Require a pumping of the beam tube on the yearly basis (cold
bore >~4K)

e Larger leak rate will provoke a magnet quench within :
30 to 100 days beam operation for He leak rate of 10 Torr.l/s
A day of beam operation for He leak rate of 10-° Torr.l/s
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