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The beginning

SIS100 beam dynamics requirements 
brought to the attention the mixed area of 
high intensity effects in presence of lattice 
nonlinearities 

•P. Spiller et al., MOPC100, these proceedings; 
•J. Stadlmann et al., MOPC124, these proceedings

6 x 1011 U28+

ΔQ ~0.3

Space charge 
tunespread
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The long term high intensity-driven 
incoherent effects

Nonlinear Resonances

• single particle motion 
(incoherent)

• orbit deformations 
• long term effects: 

resonances and 
dynamic aperture 

High Intensity effects

• many particle force
(coherent)

• short term effects
• coherent beam motion
• strong in linac

High intensity
+

Nonlinear errors

Long storage
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Example of space charge 
incoherent effects 

Liner lattice + 1 octupole High intensity bunched beam: 
ΔQx = -0.075

slow 
emittance growth

Qx0 = 26.28
Qy0 = 26.1

Qs = 1/300

+50 %
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One beam particle motion

maximum halo
amplitude

x   = 1.8 σx
px = y = pz = pz = 0
z   = 3 σz

Scattering

Trapping
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Scattering

1st synch. osc. 2nd synch. osc.

•A.I. Neishtadt, Sov. J. Plasma Phys. 12, 568 (1986)
•A.I. Neishtadt, A.A. Vasiliev NIM A 561, (2006) 158

Resonance crossing
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Trapping

consecutive 
trapping/detrapping

•A.W. Chao and Month NIM 121, 129 (1974).
•A. Schoch, CERN Report, CERN 57-23, (1958)
•A.I. Neishtadt, Sov. J. Plasma Phys. 12, 568 (1986)
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Electron Cloud 

Electron cloud effects

EC build up
EC heat load
EC induced single

bunch instability
Pressure rise
EC pinches during

bunch passage
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The pinch of the electron cloud

F. Zimmermann et al.    THPC089

Electron cloud rings created by a Gaussian bunch in free field region

Pinched EC creates nearly circular rings which feed back on the main beams

During the bunch passage through an uniform EC, 
electrons oscillates in the bunch potential creating a pinch
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Electron cloud incoherent effects

Discussions on EC incoherent effects started in the ICFA-HB2004 
workshop in relation to the SPS beam lifetime observations
(F. Zimmermann, E. Metral,E. Shaposhnikova, G.Arduini, L. Trevor)

Average growth rate     Δε/(ε Δt)  ~ 0.4

E. Benedetto et al. PAC 2005 

In simulations: unexplained slow emittance growth (noise?)
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Evidence of EC induced scattering

E. Benedetto et al. Phys. Rev. Lett. 97, 034801 (2006).

1 synch. osc.

HEADTAIL
1 EC Interaction point
LHC @ injection
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EC and SC and error resonances

Electron cloud 
effects

Single particle
resonances

High intensity 
effects

Studied

???
???

???

Comparison
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The problem of long term tracking

Fully self-consistent simulations with the present computer capabilities: 
for bunches of 106 macro-particles limits of ~106 SC kicks. 
For SIS100 108 SC kicks. For RHIC/LHC much more!  
R. Ryne THYM03, these proceedings

Numerical noise may affects the long term beam predictions: 
Noise is reduced by increasing the number of macro-particles

It is essential to develop simplified models which incorporate 
the basic physical mechanisms responsible for the 
long term effects

Medium term verification via large scale self consistent simulations
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SC model

3D Gaussian bunch

z
r

This looks like a piece
of a coasting beam

Electric field
can be analytically 
computed
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EC model

z

x

y EC rings

Bunch

Cylindrical sheet approximation
of the EC distribution: 
the electric field is expressed 
analytically

EC density
constant in the rings
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Comparison of EC and SC 
incoherent effects 

We excite one lattice 
resonance

We scan the working point in 
this range

EC

SC

Equal SC and EC
detuning

ΔQsc = - ΔQec = -0.075 
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Resonance excitation
(no space charge)

One octupole excites  4th order resonance 

Qy0 = 26.10

beam pipe set at 3.3σ beam pipe at 10σ

Error resonance
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Comparison of SC and EC 
incoherent effects 

Emittance growth and 
beam loss regimes

SC EC

Error resonance

G. Franchetti, I. Hofmann, G. Arduini, E. Benedetto, M. Giovannozzi, 
T. Linnecar, M. Martini, E. Metral, G. Rumolo, E. Shaposhnikova, 
F. Zimmermann, LHC Lumi 2006, October 16-20 2006, Valencia, Spain

•G. Franchetti, I. Hofmann, M. Giovannozzi, M. Martini, E. Metral
Phys. Rev. ST Accel. Beams 6, 124201 (2003). 

•E. Metral, G. Franchetti, M. Giovannozzi, I. Hofmann, M. Martini, 
R. Steerenberg Nucl. Instr. and Meth. A 561, (2006), 257-265.

Results are affected 
by the strength of K3
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SC and EC + structure resonances

Electron cloud 
effects

Structure EC or SC
induced resonances

High intensity 
effects

???

???
???

???
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Space charge induced 
structure resonances

At these positions of minimum transverse size 
space charge creates strong nonlinear forces which 
acts like nonlinear errors

Lattice with fodo cell
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Space charge and electron cloud 
structure resonances

The lattice optics induces a structure of space charge kicks, 
which excites a resonance
SC kick SC kick SC kick SC kick SC kick

The electron cloud creates also  structure resonances 
as it is strongly localized

EC kick EC kick EC kick EC kick

Due to the property of Coulomb forces 

resonances of order 2,4,6,8,..  are excited

Strength of the resonance
is proportional to the Coulomb
induced tunespread
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Comparison of SC and EC 
incoherent effects for 2D beams

SC EC
Synchrotron motion is frozen

I. Hofmann, G. Franchetti, J. Qiang, R. Ryne
Proc. 29th ICFA Workshop(AIP, New York, 2003), 693, 65

Similar to

Structure resonance: 105 EC and SC kicks, ΔQsc = - ΔQec = -0.075 
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Comparison of SC and EC incoherent 
effects for bunched beams

Including synchrotron motion
SC EC

Structure resonance: 105 EC and SC kicks, ΔQsc = - ΔQec = -0.075 
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Example of incoherent effects

EC incoherent effects are suspected to be responsible
for the slow emittance growth in RHIC

•W. Fischer et al., Phys. Rev. ST Accel. Beam 11, 041002 (2008).    
•S.Y. Zhang and V. Ptitsyn, Phys. Rev. ST Accel. Beam 11, 051001 (2008). 

SC incoherent effects in SIS100
G. Franchetti and I. Hofmann,  GSI Technical report 2008 
G. Franchetti PAC 2005, p. 3807
G. Franchetti et al. EPAC 2006, p. 2793
G. Franchetti PAC 2007, TUZAAB02

In CERN electron cloud incoherent effects are 
of relevance for SPS and perhaps  LHC

•E. Benedetto and F. Zimmermann, Proceedings ECLOUD04,  CERN Report CERN- 2005-001, p. 81 (2005)..
•E. Benedetto, G. Franchetti and F. Zimmermann, Phys. Rev. Lett. 97, 034801 (2006). 
•G. Franchetti, I. Hofmann, G. Arduini, E. Benedetto, M. Giovannozzi, T. Linnecar, M. Martini, E. Metral, G. Rumolo, 
E. Shaposhnikova, F. Zimmermann, LHC Lumi 2006, October 16-20 2006, Valencia, Spain. p. 192. 

•G. Franchetti and F. Zimmermann, Proc. of CARE-HHH- ADP BEAM07 workshop, Geneva, Switzerland (2007). 
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Space charge incoherent effects in 
FAIR

Nominal Nions = 0.75 x 1011/bunch
Beam1: εx/y = 35/15 mm-mrad (2σ) ΔQx/y= -0.31/-047
Beam2: εx/y = 50/20 mm-mrad (2σ) ΔQx/y= -0.21/-0.24
Turns = 1.2 x 105  (1 sec.)

First bunch @ 150 MeV/u
Nonlinear errors in bends and 
quadrupoles + COD with 16 seeds
average DA - 3σDA. 

6 x 1011 U28+

•P. Spiller et al., MOPC100, these proceedings; 
•J. Stadlmann et al., MOPC124, these proceedings
•P. Spiller, C. Omet et al., MOPC099, these proceedings;  
•A. Kovalenko, WEPD017, these proceedings; 
•P. Schnizer et al., TUPP105, WEPD021, these proceedings
•E. Mustafin et al., THPP102, these proceedings; 
•O. Malyshev et al., THPP099, these proceedings;  
•A.W. Molvik et al., Phys. Rev. Lett. 98 054801 (2006). 
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Beam loss estimates

N = 3x1011/cycle
ΔQx/y=-0.31/-0.47

No SC

No SC

N = 3x1011/cycle
ΔQx/y=-0.21/-0.34

Take one seed  (1mm residual COD, 99% beam loss) + 〈δp/p〉rms = 5 x10-4

Space charge dominates 
(incoherent effects)

Beam1 Beam2

DA dominates over space charge

2Qx + Qy =56 

Over the full cycle  N = 3x1011 ~ 3%   and for  N= 6x1011 ~15%   
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EC incoherent effect in RHIC

H. Hahn et al. NM A 499 (2003) 245–263

One electron cloud kick 
per long dipole

144 EC kicks placed in the correct
position of the BLUE ring 
and constant focusing transport 
in between EC kicks

Qx = 28.735
Qy = 29.725
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EC incoherent effect in RHIC

ΔQec = 0.03
Large EC tunespread to detect 
EC induced structure resonances
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Exploratory discussion of 
EC incoherent  effects in LHC

Approximated lattice: constant focusing between EC kick

1 EC kick per dipole ->   1152 kicks

Tunes: Qx = 64.28  Qy = 59.31, Qs = 1/168

Assumptions:

1 all EC kicks are equally strong
2 no lattice change of beta is included
3 no fluctuations of EC included
4 no adjustment of EC rings as function

of total integrated detuning
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Possible incoherent effects in LHC

Qx = 64.28  Qy = 59.31
ΔQec = 0.18
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Possible incoherent effects in LHC

Qx = 64.28  Qy = 59.31
ΔQec = 0.18 Slow emittance growth

Halo part. =0.2%

Halo part.=0.4%

emttance growth of  0.04 %
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Summary and Outlook 

We compared SC & EC incoherent effects in terms of beam emittance growth for error resonances and 
structure resonances. We find that the beam response for EC incoherent effects is understandable in
terms of periodic resonance crossing as for SC incoherent effects 

Comparison of SC and EC incoherent effect

Estimates of long term beam loss for two beams scenario in a lattice with magnet error 
and a residual 1mm closed orbit distortion are performed. The modeling of full beam intensity 
needs more realistic ring modeling including residual CO, chromaticity correction, 
compensation elements and a realistic beam distribution. 

High intensity incoherent effects in SIS100

Pinched EC  excites several resonances in RHIC which creates slow emittance growth for 
an integrated tunespread of ΔQec=0.03; 
In LHC a dense EC induced structure resonance web makes large integrated EC tunespread
(ΔQec > 0.5) undesirable. A more precise pinched EC modeling is required.  

Exploratory example of EC incoherent effects in RHIC and LHC

Long term prediction for SC are better understood than EC and experimentally benchmarked.
EC incoherent effects need further studies and dedicated experiments in order to validate models for 
long term predictions. 

Final remarks
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Asymptotic limits

z

pz

minimum 
tuneshift

maximum
tuneshift

particle crossing 
the resonance

this ellipse is determined 
by (Qx - Qx,res)/ΔQx,sc

For a Gaussian 3D beam

ΔN/N ~ (Qx - Qx,res)/ΔQx,sc
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Asymptotic limits

Estimate of N of particles candidate to be trapped:

Halo size

G. Franchetti, I. Hofmann, ICFA-HB2006, Tsukuba, 2006. WEAX01. p. 167

Estimates of halo size:

~uniformly 
filled

x

px
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Limits of this model for 
incoherent effect

Particles driven by a resonance gain transverse amplitude 
and via Coulomb force feed back on the space charge strength

If the amount of particles taking part into incoherent  
resonant motion is small, then the core beam motion 
can be considered frozen

If many particles are taken by the incoherent resonance, 
then the core beam motion changes and the overall
motion becomes coherent
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The global picture

Similar to the results of the 
CERN-PS benchmarking 
experiment (2002-2003)

•G. Franchetti, I. Hofmann, M. Giovannozzi, M. Martini, E. Metral
Phys. Rev. ST Accel. Beams 6, 124201 (2003). 

•E. Metral, G. Franchetti, M. Giovannozzi, I. Hofmann, M. Martini, 
R. Steerenberg Nucl. Instr. and Meth. A 561, (2006), 257-265.
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The global picture

emittance growth
regime

beam loss
regime

Similar to the results of the 
CERN-PS benchmarking 
experiment (2002-2003)

•G. Franchetti, I. Hofmann, M. Giovannozzi, M. Martini, E. Metral
Phys. Rev. ST Accel. Beams 6, 124201 (2003). 

•E. Metral, G. Franchetti, M. Giovannozzi, I. Hofmann, M. Martini, 
R. Steerenberg Nucl. Instr. and Meth. A 561, (2006), 257-265.
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Previous models of pinched EC 
(frozen)

Varying central density

Linear varying EC density and 
varying EC size keeping

x

No structured EC pinch modeled

E. Benedetto et al. Phys. Rev. Lett. 97, 034801 (2006).

Parallel EC Wall
G. Franchetti and F. Zimmermann
Proc. of Beam 07 , Oct. 1-6, 2007
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Example of full trapping

maximum amplitude
controlled by 
space charge and 
distance from 
resonance

with 
Qs = 1/3000
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Trapping / Scattering

Definition Trapping Definition Scattering

Smaller 
than the 
island size Larger 

than the 
island size

Trapping

De-Trapping

Fixed point

Particle invariant

turns

Fixed point

Particle invariant

turns

The two regimes are separated by the adiabaticity of the process
•A.W. Chao and Month NIM 121, 129 (1974).
•A. Schoch, CERN Report, CERN 57-23, (1958)
•A.I. Neishtadt, Sov. J. Plasma Phys. 12, 568 (1986)

•G. Franchetti, I. Hofmann  NIM A 561, (2006), 195
•G. Franchetti et al., HB 2006, 
•G. Franchetti et al., EPAC 2006, 
•G. Franchetti PAC 2007
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maximum halo amplitude

virtually 
infinity
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Chromaticity

virtually 
infinity

without chromaticity

virtually 
infinity

sop-band
of beam loss
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Experimental evidences for 
incoherent space charge effects
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Space charge incoherent effects in 
FAIR
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Fair 2
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Incoherent effects driven by structure 
resonances

It is well known that space charge drives structure resonance

For a stationary beam distribution the space charge force 
is related to the rms beam envelope

As an expansion of the Coulomb force 

is 
Example of axe symmetric 2D beam

for a distribution 

but the dependence of a from the lattice optics

is at the origin of the space charge induced structure resonances
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EC incoherent effect in LHC
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