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Outline

 Overall objectives and issues
* Accelerating structure design and optimization

 High-power limits — breakdown and pulsed surface
heating

* Recent high-power rf test results
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Overall objectives and issues

Design, prototypes, high-power tests and subsystem development of CLIC
(Compact Linear Collider) 12 GHz accelerating structures.

* High-gradient, 100 MV/m — Quantitative investigation of high-power effects
like breakdown and pulsed surface heating. Technologies for high gradients
like materials and surface preparation. High-power rf testing

 Beam dynamics — Demanding short and long range transverse wakefield
specifications. Strong higher-order-mode suppression. Micron alignment
tolerances. Integrated optimization.

« Technical issues — Vacuum, cooling, manufacture and system integration.

and it’s all heavily coupled

W. Wuensch, CERN EPAC, 26 June 2008
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@J Design process

Strong interrelation between high-gradient performance and
beam dynamics performance through the geometry of the
structure.

Example — a structure with a smaller iris aperture will give a
higher gradient but also stronger short-range transverse
wakefields and thus a higher emittance growth.

There are many more such interrelations so an integrated
design procedure has been developed,

W. Wuensch, CERN EPAC, 26 June 2008
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@ﬂ Inputs to the design

Beam dynamics o

High-power constraints | | .

W. Wuensch, CERN EPAC, 26 June 2008
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@J High-power rf constraints

We face two main effects, rf breakdown and pulsed surface
heating.

* rf breakdown — Need to determine gradient as a function of
geometry. Local fields appear to give most of the answer but
some hints of global effects.

 Pulsed surface heating — We know functional dependence
but need basic material input data.

Next some latest ideas of the rf breakdown limit, then latest
data on pulsed surface heating.

W. Wuensch, CERN EPAC, 26 June 2008



@J Quantifying rf breakdown

We are going to look at the breakdown trigger from the
point of view of power flow.

First by applying the classical Fowler-Nordheim field-
emission equations.

Then we will look at the coupling of rf power to field
emission sites.

W. Wuensch, CERN EPAC, 26 June 2008



Time constant to reach the copper melting point (cylinders, 3=30)

Parameters to attain the melting point of the tip
of a Cu cylinder of given radius and =30
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The tips which are of interest for us are extremely tiny, <100 nm (i.e. almost
invisible even with an electron microscope)

CLIC Breakdown Workshop Sergio Calatroni TS/MME 11



Power density at the copper melting point (cylinders, =30)
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Power density of about 0.5 W/um?2

CLIC Breakdown Workshop

Sergio Calatroni TS/MME
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—<=— " Field emission and rf power flow
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There are two regimes depending on the level of rf power flow

1. If the rf power flow dominates, the electric field remains
unperturbed by the field emission currents and heating is
limited by the rf power flow (We are in this regime)

2. If power flow associated with field emission current Pgy
dominates, the electric field is reduced due to "beam loading”
thus limiting field emission and heating

Alexej Grudiev, New RF Constraint. May. 2008



>t Field emission and power flow
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—===—Field emission and rf power coupling

cLIC

What matters for the breakdown is the amount of
rf power coupled to the field emission power flow.
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Assuming that all breakdown sites have the same
geometrical parameters the breakdown limit can be
expressed in terms of modified Poynting vector S..
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Our new design constraint. Must be less than 6 W/um? at 100 ns.

Alexej Grudiev, New RF Constraint. May. 2008



Surface field distributions
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Figure 2.10: Magnetic field distribution on the cell walls of an HDS CLIC prototype
structure. The magnetic field distribution in the figure (H [A/m]) is given for 1
MV /m accelerating gradient. For fixed geometry the magnetic field is proportional
to gradient, so for 100 MV /m H need to be multiplied by 100. @©Alexej Grudiev,
CERN

Looks similar to Es but varies correctly

for high and low vg Now pulsed surface heating
W. Wuensch, CERN EPAC, 26 June 2008



Pulsed surface heatin
@ g

Each rf pulse induces a temperature rise, typically 50 °C, in the cavity
walls creating a cyclic compressive stress which results eventually in
fatigue damage. The stress level is easily calculated but material property
data in the time and distance scales, the number of cycles for CLIC is not
available.

We have made a trio of experiments to obtain this data.

« Ultrasonic — Correct number of cycles, many samples, cheap (but bulk
stress, failure criterion different)

 Laser — Correct pulse characteristics, thermally induced, available at
CERN (few cycles, failure criterion different)

* If tests — What we really need (limited number of cycles, limited number
of tests (and facilities), expensive)

W. Wuensch, CERN EPAC, 26 June 2008



Fatigue by ultrasonic experiments
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Fatigue by laser experiments
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/P% Wohler curves of the test results (Stress vs. N)
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@ﬂ High-power rf testing

Now we need to put our theory to test!

The work | will describe now is part of an
extremely active and productive collaboration
between KEK, SLAC and CERN.

W. Wuensch, CERN EPAC, 26 June 2008



T18 — The collaboration structure.

W. Wuensch, CERN EPAC, 26 June 2008



High-power rf test design
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T18V(G2.4_Disk structure RF process profile begin at Apr.14 2008

The gradient is the average unloaded gradient for the full structure.

First 500hrs, maximum unloaded gradient is 110MV/m
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P78 Second 500hrs, maximum unloaded gradient is 120MV/m
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BKD Rate Profile at Different Conditioning Time
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Predictions for test structures

Prediction of average unloaded gradient at rect. pulse length of 100ns and BDR=1e-6
based on the results achieved in T53vg3MC: 102.3MV/m at 100ns and BDR=1e-6:

19.5Wu or Sc=6.2MW/mm2@100ns.

TD18vg2.4 | T18vg2.4 | T28vg3 | TD28vg3 | CLIC_G
P/C*(1,7)/3= 19.5Wu
Average unloaded gradient [MV/m] | 132 136 110 104 134
S.=6.2MW/mm? @ t,=100ns
Average unloaded gradient [MV/m] | 109 106 105 103 120
+

Observed value is 124 MV/m. Effect of strong tapering?

Alexej Grudiev, New RF Constraint.

May. 2008



Technical issues
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W. Wuensch, CERN EPAC, 26 June 2008



@ﬂ Conclusions

* A reasonably coherent and quantitative picture of the effects which limit
gradient is emerging.

« The T18 has so far achieved a gradient of 100 MVM/m, which represents
a significant step forward towards showing our predictions are accurate
and that the gradient goal is reachable.

* A strong international collaboration has formed to develop accelerating
structures.

Links:
CLIC homepage: http://clic-study.web.cern.ch/CLIC-Study/

Breakdown workshop: http://indico.cern.ch/conferenceDisplay.py?confld=33140

X-band collaboration meeting:
http://indico.cern.ch/conferenceDisplay.py?confld=30911

W. Wuensch, CERN EPAC, 26 June 2008
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