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STATISTICAL WEIGHTING OF THE MICE BEAM

C. T. Rogers, Rutherford Appleton Laboratory, Oxon., UK on behalf of the MICE collaboration

Abstract

Conventionally only average properties such as means
and variances of charged particle beams are measured.
Such atechniqueislimited in that it is challenging to mea-
sure moments beyond the second and certain correlations
are difficult to measure. In the Muon lonisation Cooling
Experiment (MICE) [1], the beam rate is sufficiently low
that particles pass singly through the accelerator and mea-
surements can be made of the position, time (relative to RF
phase) and momentum of individual particles. This makes
anumber of new analysistools available. In this paper one
particular tool is studied; the ability to select an input beam.

SELECTION OF A BEAM FOR MICE

In MICE, muons are produced by pions decaying up-
stream of the experiment. They then traverse aset of detec-
tors that measure the type and phase space coordinates of
the particles, a cooling apparatus that performs some cool-
ing and then another set of detectors that remeasure the
type and phase space coordinates of the particle. MICE
measures the cooling performance by comparing the input
distribution of particles with the output distribution of par-
ticles. A principa measure of coolingisthe changein beam
emittance, which is some function of the second moments
of the beam.

In MICE, the cooling performance is dependent on the
input distribution of particles. In particular, for good cool-
ing performance the beam must be aligned and matched to
the magnetic lattice such that the beam centre travels along
the cooling channel axis and the covariance matrix is peri-
odic over the length of a cooling cell. This places a con-
straint on the beam first and second moments. In addition,
it has been observed that the MICE cooling performance
is quite dependent on certain third moments such as the
amplitude-momentum covariance of the beam.

Certain aspects of the input beam can be controlled by
the MICE muon beamline. This beamline has been de-
signed to generate beams with a variety of different trans-
verse emittances matched to the MICE lattice in transverse
phase space. The beamlineis expected to provideonly lim-
ited control over longitudinal phase space. In particular, the
muon beamlineis expected to produce a beam with alarger
energy spread than is desirable, with undesirable correla
tions between energy and transverse coordinates and with
aflat distribution intime [2].

Hence, in order to achieve the best possible cooling per-
formance, it is expected to be necessary to statistically
weight events in order to choose a beam that is matched
sufficiently for the experiment to observe and measure
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cooling to high precision. Eventsthat sit in an areaof phase
space that is statistically depleted relative to the matched
distribution would receive a larger weight; and those that
Sit in an area of phase space that is statistically enriched
relative to the matched distribution would receive asmaller
weight. This weighting must be performed in six dimen-
sions due to coupling between transverse phase spaces due
to solenoidal fields and coupling between transverse and
longitudinal phase space due to non-linearitiesin the beam
transport and dispersion introduced by the beamline. This
isdifficult astraditional binning techniquesfail for high di-
mensions due to the sparseness of phase space, even for
beams with quite high statistics.

In this note, | present two methods by which statistical
weights can be applied to events according to their posi-
tion in phase space in order to select the beam momentsto
match some desired distribution. | then simulate a beam
passing through MICE and show the change in emittance
for the weighted and unweighted beams.

WEIGHTING BY BEAM MOMENTS

In accelerator physics, evolution of abeamisusually ex-
pressed in terms of some perturbation theorem about some
reference tragjectory, which can be used to describe the evo-
lution of the beam moments [3]. The n*" order transfer
map couples m!”* moments to (m + n — 1) moments,
so higher order terms in the perturbation couple lower mo-
ments to progressively higher moments. These higher or-
der terms can produce undesirabl e effects such as emittance
growth. Such aformalism lends itself to using a moment-
based technique to weight the beam.

Consider some input distribution of events f(Z) and
some desired output distribution ¢(Z) in a multidimen-
sional phase space described by phase space vector Z. |
apply a statistical weighting to each event given by a poly-
nomial function w(Z). | weight with the multi-dimensional
polynomial

w(Z) =

L+ Y ai (@) + Y iy (@, w0;) +
+ Zailizig (@i Tin @ig) + - - D

such that

g(f) = N(l + Z gy (‘L'll) + Zailiz (xilxiz) +
+ Zailizis (‘Lh‘le‘LlS) + .. )f(‘f) (2

For convenience of notation, | denote moments of the dis-
tribution f (), < @, T4, ... 2, >p by VI, ..
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An n" moment of the function g(z), V/ can be

. Ji---gn’
written as
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This is actualy a linear problem. Defining vectors i
and @ with dements u; = V. — V! . anda; =

ai,..i, and defining the matrix M with elements M;; =
(Vf -V v ) Then 4 reducesto

il---im,jl---jn ceilm Jl---jn
Md = u, 5)

which can be solved for the polynomial coefficientsa, ., -

| show contours of an unweighted distribution of par-
ticles and the distribution after weighting using this al-
gorithm in Figure 1. 10000 particles were sampled from
a two dimensional multivariate Gaussian distribution with
normalised emittance ¢, 15 mm, 3, 334 mm and «, O.
Moments were weighted up to tenth momentsto a distribu-
tion with normalised emittance e, 4.2 mm, 3, 260 mm and
a, -0.75. The agorithmis successful in producing a beam
with the desired moments. In particular, the optical func-
tions and emittance of the weighted beam and the target
distribution are the same to good precision.

In general this algorithm is quite successful. However,
for higher dimensions the time taken to cal culate the beam
moments can be long, the algorithm can generate negative
weights and for higher moments the tails of the distribu-
tion can dominate the calculation, eventually leading to nu-
merical precision errors. The latter two problems may be
soluble by choosing a better set of functionsfor weighting.

VORONOI TESSELATION

It is possible to tesselate a distribution of particles by
defining a cell for each particle, the region closest to a cer-
tain particle. This is known as a Voronoi tesselation [4].
By calculating the volume of each Voronoi cell, we can
then calculate the phase space density for each particle in
the distribution. In Figure 2 | show the Voronoi tesselation
of aset of particlesin some two dimensional space.

After calculating the density associated with each parti-
cleinthedistribution, it isthen possible to weight the beam
by requiring this density to be that appropriate for some
target distribution. Such a weighting is show in Figure 3.
Here, the Voronoi tesselation for a set of points was found
in two dimensions using the QHull code [5]. The effect of
the edge of the beam was reduced by defining the fiducial
phase space volume of the detector, in this case taken to
be an upright elipse with width in P, of 100 MeV/c and
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Figure 1. 10000 particles sampled from a Gaussian distri-
bution, before (top) and after (bottom) statistical weights
are applied by the moment method.

Figure 2: An example of a VVoronoi tesselation.
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in z of 150 mm. Particles were added in an ellipse at ra-
dius 10 % larger than thisfiducial volume, and the volume
of the Voronoi cells were calculated using these additional
particles. Subsequently particles outside the fiducia vol-
ume were discarded, including these additional particles.
This prevents particles on the distribution boundary receiv-
ing very large weightings.
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Figure 3: The distribution weighted now using the Voronoi
algorithm.

While this technique is very useful, it is constrained by
the amount of computer memory required to record the
teselation in a high dimensional space. Thistypically con-
strains the number of particles or phase space dimensional-
ity that can be used in the tesselation. Alternative Voronoi
algorithms may reduce this requirement. In addition, some
particles can sit in regions of rather high volume and so
have large statistical weights applied. This may lead to
greater statistical errorsin any cooling measurement.

SIMULATED BEAM

Two beams were simulated passing through the MICE
cooling channel using the GAMICE package [6], one with
awell matched beam and the other with a significant mis-
match introduced. It is hoped that the mismatch due to
the MICE beamline will not be as severe as that shown.
The transverse optical 3 function and change in transverse
emittance of the beam is shown. These calculations were
repeated for the mismatched beam with additional statis-
tical weights added to give the beam the distribution of a
matched beam using the moment technique outlined above.
The cooling performance of the weighted beam is close to
that of the matched beam while the mismatched beam is
actually heated.

CONCLUSIONS

Two algorithmsfor choosing statistical weights to make
a distribution of particles appear like an alternative distri-
bution have been shown. In MICE, this will enable the
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Figure 4. Transverse 5 function and cooling performance
of a (black) matched beam, (red) mismatched beam and
(blue) weighted mismatched beam.

measurement of cooling despite a mismatch or misalign-
ment of the input beam that would naturally worsen the
actual cooling performance. These algorithms have been
used to weight a distribution of particles and its effect on
a Monte-Carlo simulation of the cooling distribution has
been demonstrated to enable the beam to be rematched.
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