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Abstract
During the passage of a proton bunch through an electron

cloud, a complicated electron density modulation arises,
with characteristic ring or stripe patterns that move radially
outward along the bunch. We present simulation results for
field-free and dipole regions, which reveal the morphology
and main features of this phenomenon, explain the physical
origin of the stripes in either case, and discuss the depen-
dence on key parameters.

INTRODUCTION
When a proton or positron bunch passes through an

electron cloud generated by preceding bunches, the cloud
electrons are attracted towards the transverse center of the
bunch or “pinched”, resulting in regions of high electron
density inside the bunch. This electron-cloud “pinch” gives
rise to an incoherent betatron tune shift which varies with
the longitudinal position and with transverse amplitude.
Combined with synchrotron motion and together with the
non-uniform distribution of the electron cloud around a
storage ring (in the SPS, for example, the electron cloud
builds up preferentially inside the dipole magnets [1]), this
tune shift in turn leads to the excitation of betatron and
synchro-betatron resonances [2, 3], as well as to “scatter-
ing” off these resonances [3]. For the LHC proton beam in
the PS, SPS and LHC itself, these effects can be significant
[4]. Some of their characteristics resemble space-charge
phenomena [3, 5, 6].

Early models of the electron pinch assumed an elec-
tron density, or tune shift, that linearly increases along the
bunch. Simulations and analytical treatments show that in
reality, due to the nonlinear oscillation of electrons in the
bunch potential, “stripes” of high density form close to the
center of the bunch and then propagate outwards [7]. The
presence of a dipole magnetic field restricts the horizontal
motion of the electrons, and can lead to the appearance of
different, “elliptical” stripes, that again start at the trans-
verse bunch center and later shift outwards [8]. Recent
studies using a refined pinch model with stripes have un-
covered a complex phase-space structure, indicating the
possibility of larger beam losses and stronger emittance
growth than previously anticipated [6, 9].

ELECTRON MOTION
If the transverse beam size is much smaller than the vac-

uum chamber, we can approximate the electron cloud den-
sity in the vicinity of the beam prior to a bunch arrival by a
uniform distribution. Under the influence of the electric
field of the bunch, the electrons of the initially uniform
cloud are perturbed and develop a structure with local den-
sity enhancements.

The electron motion in the bunch potential is character-
ized by the linear oscillation frequencies of electrons close
to the transverse center of the beam,ωe;x,y. In the absence
of an external magnetic field and for a round bunch the fre-
quency is the same in both planes, and, assuming a trans-
verse Gaussian density with rms sizeσr, equal to

ωe(z) [m−1] ≡ λ(z)re/σ2
r , (1)

for an arbitrary longitudinal line densityλ(z). Introducing
the radial coordinater =

√
x2 + y2, and its normalized

counterpart̃r ≡ r/σr, the electron equation of motion is
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)
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where the left-hand side represents the linear oscillation
at small amplitudes, and the right-hand side the nonlin-
ear terms. We observe thatωe(z) defines the scaling of
the pinch, so that e.g., for a fixed longitudinal shape, dou-
bling the bunch intensity is equivalent to halving the bunch
length, or to shrinking the transverse beam sizes by

√
2.

If the bunch is not round, the horizontal and vertical os-
cillation frequencies differ, and a second parameter or func-
tion is needed to characterize the pinch, e.g. either two
frequenciesωe;x,y, or one together with the aspect ratio
σy/σx.

In case of a strong dipole field oriented in the vertical di-
rection, we can consider the electrons’ horizontal position
as frozen. The vertical force yields the equation of motion
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)
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)
, (3)

where we have introduced a normalized vertical coordi-
nateỹ ≡ y/σr, and again assumed a round beam (σr ≡
σx = σy). Also hereωe(z) characterizes the electron mo-
tion completely, via (3).

For comparing results it is convenient to introduce the
linear oscillation phase

φe(z) ≡
∫ z

−∞
ωe(z′)dz′ . (4)

which for two specific longitudinal profiles translates to

φe(z) =
reNb

2σ2
r

{ (
1 + erf

(
z√
2σz

))
(Gaussian)

(1 + 2z/lb) (uniform)
.

SIMULATION PARAMETERS
The simulation employs about 100,000 macro-electrons

which are launched evenly distributed in the transverse
space on a wide rectangular grid extending to±30σx,y

with initial velocity. The initial electron energy of a few
electron-volt can be neglected, since the typical electron
kinetic energy acquired during the pinch is much larger, of
orderme(cωeσr)2/2, whereme denotes the electron mass
andc the speed of light. For simplicity, we will consider
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only circular symmetric bunches, for which the electron
motion is described by (2) or (3). The bunch parameters
in our simulation represent the LHC beam at injection: We
considerNb = 1.15× 1011 protons per bunch, with trans-
verse rms sizeσx,y = 0.88 mm and rms bunch length
σz = 11.4 cm. The transverse beam distribution is taken to
be Gaussian; in the longitudinal plane we choose either a
Gaussian or a uniform shape. The zero of the longitudinal
coordinatez coincides with the bunch center.

STRIPE STRUCTURE
Figure 1 presents the simulated density enhancement in

thex−z plane aty = 0 (left pictures) and also in a parallel
plane with2σ vertical offset (right pictures). The top pic-
tures show results for a field-free region, the bottom ones
for a dipole field. In all cases, about 4 stripes emerge dur-
ing the passage of the bunch. For the field-free region the
electron density at the center of the bunch, aty = 0, be-
comes very high (note the different density scale). For a
plane with vertical offset,y = 2σy, the stripe structure be-
comes clearly visible also in the field-free case. Figure 2
shows the corresponding density in thex − y plane at the
longitudinal positionz = +σz.
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Figure 1: Electron density enhancement in thex− z plane
at y = 0 (left) andy = 2σr (right) in a field-free region
(top) and in a dipole (bottom), for a Gaussian bunch.

Figure 2: Electron density enhancement in the transverse
plane atz = σz without field (left) and in a dipole (right).

Analyzing these data, the left picture of Fig. 3 presents
the simulated vertical position of the outermost (horizontal)
stripe as a function of its horizontal position. The stripe for
the dipole is almost of the same round circular shape in
thex − y plane as the one without field, and only slightly

flatter. The right picture shows that the density in the stripe
hardly varies with vertical position, both without field and
in a dipole.

dipole

no field
dipole

no field

Figure 3: Vertical vs. horizontal position of the outermost
stripe atz = 1σz, i.e.φe ≈ 1.45 × 2π (left), and the peak
density in this stripe vs. the vertical position (right), com-
paring a field-free region and a dipole magnet.

Simulations were also performed for a longitudinal uni-
form bunch profile with a full bunch length chosen equal
to
√

2πσz. Figure 4 demonstrates that, when plotted as a
function ofφe instead ofz, the spatial distribution and mag-
nitude of the density enhancement are similar, albeit not
fully identical, for the Gaussian and uniform longitudinal
profiles. Always a new “stripe” emerges on axis roughly
at every half period of linear oscillation, starting fromπ/2,
i.e. atφe = π/2, 3π/2, etc.

Figure 4: Electron density enhancement in thex−φe plane,
at y = 0, with a Gaussian (left) or uniform longitudinal
profile (right) without field (top) and in a dipole (bottom).

DISCUSSION
Comparing the top and bottom pictures in Figs. 1 or 4,

we notice that while in a field-free region the electron den-
sity of a stripe decreases as the latter “moves” to larger
amplitudes, in a dipole field the density increases instead.
This is further illustrated in the right picture of Fig. 5 which
shows the simulated density in the outermost stripe, in the
planey = 0, as a function of its horizontal position. The
two lines were fitted by eye through the simulation data for
amplitudeŝx > 1σr. They correspond to a linear peak den-
sity evolution ofρ̂/ρ0 ≈ (17− x̂/σr) in a field-free region,
andρ̂/ρ0 ≈ (11 + x̂/σr) inside a dipole.

The physical origin of the stripe patterns differs for the
field-free region and for the dipole field, as is illustrated in
Fig. 6. Without magnetic field, the electrons move radi-
ally. At large amplitudes they undergo a highly nonlinear
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Figure 5: Horizontal position of the outermost stripe
vs. electron oscillation phaseφe along the bunch (left), and
the density enhancement in this “stripe” as a function of
horizontal stripe position (right), for a field-free regionand
a dipole. The solid line on the left is the prediction derived
from (7); the other three lines are “eyeball” fits.

motion, losing their synchronization (left picture of Fig.6).
The stripes in physical space are the result of projecting the
electron distribution winding around the phase-space origin
onto thex axis. To estimate the amplitude of the turnover
point we may consider electrons which started their jour-
ney atr̃0 ≫ 1, so that we can approximate the force in (3)
by its asymptotic form∝ 1/r̃. Integration yields∫ r̃

r̃0

dr′√
ln (r̃0/r′)

= −√πr̃0 erf
(

ln
r̃0

r̃

)
= 2φe(z) . (5)

An inversion of this relation would givẽr as a function
of r0, and the extreme point of this functioñr(r̃0) be
an estimate for the location|x| of the outermost stripe.
More empirically, the simulation data for an intermediate

range ofφe values,0.4 <∼ φe
<∼ 1, can be described by

|x|/σr ≈ 3φe(z)/(2π), which is shown by a thin dashed
line in the left picture of Fig. 5; for larger values ofφe the
stripe distance from the origin grows faster than linearly.
After crossing the beam axis the electrons spread out uni-
formly in all directions, and the peak density decreases in-
versely with distancẽr, which may explain the shrinking
electron density in the right picture of Fig. 5.
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Figure 6: Snapshot atz = 1σz, of electrons in horizontal
phase space for a field-free region (left) and in thex − y
plane for a dipole field (right). The two colors on the left
distinguish electrons which started on either side of the
beam. The right picture shows electrons launched aty > 0.

In a dipole field, as the horizontal amplitude|x| increases
the vertical electron motion becomes approximately linear
over a larger and larger vertical range,|y| <∼ |x|, and, there-
fore, an ever greater number of electrons reach the central
planey = 0 simultaneously. The regions of increased den-
sity on the horizontal axis correspond to the crossing of
y = 0 by large groups of electrons oscillating in the linear
vertical beam field atx positions where the local vertical

phase advanceφe(x, z) is equal toπ/2 plus a multiple ofπ
(right picture of Fig. 6). More specifically, for amplitudes
|y| <∼ |x| and|x| ≫ σr, (3) can be approximated as

d2ỹ

dz2
+

2ω2
e(z)

(x/σr)2
ỹ ≈ 0 , (6)

i.e., the local vertical oscillation frequency depends onx as
ωe,y(z, x) ≈

√
2ωe(z)σr/|x| , (7)

whereωe(z) is the central oscillation frequency (1). Ac-
cordingly, the location of a “stripe” starting atφe(z) ≈
kπ/2 (k integer) near the origin, should later, at
larger horizontal amplitudes, be described by|x|/σr ≈
4
√

2φe(z)/(2π)/k. The location of the outermost stripe
(k = 1) is expected at|x|/σr ≈ 5.66φe(z)/(2π), which,
in the left picture of Fig. 5, is superimposed on the dipole
simulation data as a thick solid line. Data and analytical
curve are in nearly perfect agreement. The region where
the vertical motion is approximately linear and, therefore,
also the number of “synchronized” electrons crossing the
y = 0 plane at the same time grow in proportion to the
distance|x|, which may explain the density evolution for a
dipole field seen in the right picture of Fig. 5.

CONCLUSIONS
The accumulated phase advance of the linear electron os-

cillation φe(z) determines the spatial structure of the elec-
tron pinch, almost independently of the longitudinal bunch
profile. The pinch structure is also affected by the presence
or absence of a magnetic field. In all cases considered, the
high-density “stripes” are approximately circular rings in
thex − y plane. At every phase advance valueφe equal to
a π/2 plus a multiple ofπ a new stripe emerges close to
the beam axis. The physical origin of the stripes is differ-
ent in the field-free and dipole case, which explains why in
a field-free region the peak electron density decreases as a
“stripe” shifts outwards, while in a magnetic field the peak
electron density grows at larger amplitudes. For either case
the simulation indicates a linear dependence of the stripe
density on its distance from the axis, with a slope of+1 or
−1, respectively, in normalized units. An analytical func-
tion describes the variation of the horizontal stripe position
with φe for a dipole field in good agreement with the simu-
lation. The same dependence for the field-free case can be
modelled in general analytical terms and by an eyeball fit.
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