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Abstract

A class of symplectic integrators with positive steps
(SABA2) is applied to investigate the non-linear dynam-
ics of the CLIC damping rings. The detrimental effect of
the chromaticity sextupoles is studied using frequency and
diffusion maps and verified with MADX ptc dynamic aper-
ture tracking. The reduction of the dynamic aperture for
off-momentum particles is also investigated.

THE SABA2 SYMPLECTIC INTEGRATOR

Symplectic integrators are extensively used for single
particle tracking in accelerators. A symplectic integrator
scheme, which involves only positive steps, for perturbed
Hamiltonians of the form H = A + εB, where both A and
B are integrable, was proposed [1], and all order of such
integrators were derived [2]. A particular member of the
family, namely the SABA2 integrator has already proved
to be very efficient for the numerical study of astronomi-
cal [2], as well as accelerator models [3, 4].

An orbit of a Hamiltonian system of N degrees of free-
dom H(�p, �q), with �p = (p1, . . . , pN), �q = (q1, . . . , qN )
and qi, pi, i = 1, . . . , N the generalized coordinates
and momenta respectively, is defined by a vector �x(t) =
(x1(t), . . . , x2N (t)), with xi = pi, xi+N = qi, i =
1, . . . , N . Defining the Poisson bracket of functions
f(�p, �q), g(�p, �q) by:

{f, g} =
N∑

i=1

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
, (1)

the Hamilton equations of motion take the form:

d�x

dt
= {H,�x} = LH�x, (2)

where LH is the differential operator defined by Lχf =
{χ, f}. The solution of Eq. (2), for initial condi-
tions �x(0) = �x0, is formally written as �x(t) =∑

n≥0
tn

n! L
n
H�x0 = etLH�x0. A symplectic scheme for in-

tegrating (2) from t to t + τ consists of approximating in
a symplectic way the operator eτLH = eτ(LA+LεB) by
an integrator of n steps involving products of e ciτLA and
ediτLεB , i = 1, . . . , n, which are exact integrations over
ciτ and diτ of the integrable Hamiltonians A and B. The
constants ci, di, are chosen so that to increase the order of
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the remainder of this approximation. For the SABA2 inte-
grator we get:

SABA2 = ec1τLAed1τLεBec2τLAed1τLεBec1τLA , (3)

with c1 = 1
2 (1 − 1√

3
), c2 = 1√

3
, d1 = 1

2 . Using the
SABA2 integrator we are actually approximating the dy-
namical behavior of the real Hamiltonian A + εB by a
Hamiltonian K = A + εB + O(τ 4ε + τ2ε2), i. e. intro-
ducing an error term of the order τ 4ε + τ2ε2.

The accuracy of the SABA2 integrator can be improved
when the term C = {{A, B}, B} leads to an integrable
system, as in the common situation of A being quadratic in
actions �p and B depending only on positions �q. In this case,
two correctors can be added with small negative steps:

SABA2C = e−τ3ε2 c
2LC (SABA2)e−τ3ε2 c

2LC . (4)

The value of c = (2−
√

3)/2 was chosen in order to elimi-
nate the τ 2ε2 dependence of the remainder which becomes
of order O(τ 4ε+τ4ε2). We note that the SABA2 integrator
involves only positive steps which increases its numerical
stability, while, the addition of the corrector results to bet-
ter accuracy of the scheme, introducing simultaneously a
small negative step. The accuracy of the SABA2C integra-
tor was studied in [3, 4] where it was shown that it is very
precise with a precision one order of magnitude higher than
the Forrest and Ruth 4th order integrator [5].

We also note that the usual ‘drift–kick’ integrator, which
is quite commonly used in accelerator tracking, corre-
sponds to the 2nd order symplectic integrator SABA1 =
e

τ
2 LAeτLεBe

τ
2 LA , having a remainder of order O(τ 2ε).

The accelerator Hamiltonian in ‘hard edge’ and ‘small
angles’ approximation is written as

H(x, y, l, px, py, δ; s) = H0 + V (5)

with the unperturbed part H0 = (1 + h(s)x) p2
x+p2

y

2(1+δ) , and
the perturbation written as a power series

V =
∑

n≥1

n∑

j=0

an,j(s)xjyn−j, (6)

where an,j(s) are appropriate path dependent constants.
The Hamiltonian (5) is suitable for the implementation of
the SABA2C integrator scheme ( A ≡ H0, B ≡ V , ε = 1).
The corresponding Hamilton equations of motion for the
unperturbed part of the Hamiltonian are

dx

ds
=

(1 + hx)px

1 + δ
,

dpx

ds
= −h

(
p2

x + p2
y

)

2(1 + δ)
dy

ds
=

(1 + hx)py

1 + δ
,

dpy

ds
= 0

. (7)
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Assuming that pi
y �= 0 and (1 + hxi)(1 + hxf ) > 0, which

is true for real accelerators since usually |hx| � 1, the
following solution can be derived [3, 6]:

esLA :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xf =
1
h

[
(1 + hxi)(cosφ +

pi
x

pi
y

sin φ)2 − 1
]

yf = yi +
1 + hxi

h

[
pi

x
2 + pi

y
2

pi
y
2 φ+

pi
y
2 − pi

x
2

2pi
y
2 sin(2φ) + 2

pi
x

pi
y

sin2 φ

]

pf
x = pi

y

pi
x − pi

y tan φ

pi
y + pi

x tan φ
pf

y = pi
y

,

(8)

where φ =
pi

yhs

2(1 + δ)
and superscripts i, f denote respec-

tively the coordinates at the entence and the exit of an ele-
ment. As the perturbation does not depend on the momenta
px, py it is easily shown that the operator esLB (B ≡ V ) is:

esLB :

⎧
⎪⎪⎨
⎪⎪⎩

xf = xi, pf
x = pi

x −
∂V

∂x

∣∣∣∣
i

s

yf = yi, pf
y = pi

y −
∂V

∂y

∣∣∣∣
i

s
, (9)

where

∂V

∂x

∣∣∣∣
i

=
∑

n≥1

n∑

j=1

jan,j(xi)j−1(yi)n−j

∂V

∂y

∣∣∣∣
i

=
∑

n≥1

n∑

j=0

(n− j)an,j(xi)j(yi)n−j−1

, (10)

are the first partial derivatives of V (x, y) with respect to x
and y, evaluated at the initial point xi, yi.

In order for the corrector operator e sLC to be applica-
ble the double Poisson bracket C = {{A, B}, B} should
determine an integrable system. For A = H0 and B =
V (x, y):

{{A, B}, B} =
1 + hx

1 + δ

[(
∂V

∂x

)2

+
(

∂V

∂y

)2
]

, (11)

which is a function of only the positions x and y corre-
sponding to an integrable system, leading to the corrector
scheme whose expression can be computed explicitly [6].

CLIC DAMPING RINGS

The CLIC damping rings are composed of two arcs
with theoretical minimum emittance (TME) cells and long
straight sections filled with super-conducting wigglers [7].
Their latest parameters can be found in [8]. In order for
the TME cells to achieve an ultra-low emittance, a high-
phase advance per cell is necessary which eventually leads
to a high chromaticity and small dispersion and thereby
to chromaticity sextupole strengths which are high, reduc-
ing the dynamic aperture (DA). This is confirmed also

in Fig. 1, where the 1000-turns DA of the CLIC damp-
ing rings is plotted. The 5D tracking is performed with
MADX-ptc [9] and the only non-linearities included are the
two sextupoles families, the strength of which is tuned to
set for chromaticity equal to zero. The wigglers are mod-
eled as a series of small dipoles with opposite polarity. The
on-momentum horizontal DA is quite small and equal to
around 3σx whereas the vertical one is larger (around 8 σy).
For off-momentum particles of ±0.5%, the situtation re-
mains unchanged for the horizontal aperture but the vertical
one reduces by around 2σy . Note also that for the negative
momentum spread the DA appears even smaller.

Figure 1: 1000-turns 5D Dynamics aperture for on (blue)
and off momentum particles of + (red) and - (green) 0.5%.

A frequency map for the on-momentum dynamics is
produced using the SABA2C symplectic integrator mod-
eling the CLIC damping rings (Fig. 2). The tracking is
done for 1200 turns and the color coding corresponds to
the frequency diffusion coefficient, defined by the loga-
rithm of the frequency vector variation in two consecutive
time-spans (blue for stable, red for chaotic motion). Al-
though the particles are tracked for both positive and neg-
ative initial horizontal amplitudes, the frequency map cor-
responding to positive amplitudes is presented here, as the
complementary one is very similar. The symplectic inte-
grator reproduces with a good precision the linear tunes
of (69.84,33.80). The map shows that the detuning with
amplitude is unbalanced between the two planes, giving
a huge tune-shift in the vertical, for high horizontal am-
plitudes, and an order of magnitude smaller in the hori-
zontal (for vertical amplitudes). This means that the cross
term of the first order tune-shift with amplitude is quite big.
For this reason there is a multitude of vertical resonances
crossed like νy = 33.67 and νy = 33.75. As the super-
periodicity of the ring is just 2, these resonances should
correspond to the systematic 6th (0,6) and 8th order (0,8).
The first one does not appear only for νy = 33.67, but also
for νy = 33.83, in the upper left part of the frequency map,
whereas the second one appears also in νy = 33.80 on top
of the working point. This line corresponds also to the sys-
tematic vertical 5th order resonance (0,5), which also ap-
pears at the right bottom corner of the map, as νy = 33.5.

A complementary information about the dynamics of the
system is the diffusion map of Fig. 3 where the real trans-
verse space (x, y) is mapped with the frequency diffusion
coefficient. The resonant lines are visible as light colored
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Figure 2: Frequency map for on-momentum particles of the
CLIC damping ring.

curves penetrating into the “blue see” of stable motion. It is
important to stress that the DA is very close to the one ob-
tained the MADX-ptc tracking, ranging from 60 μm in the
horizontal plane, which corresponds to 3 σx for a beam size
of 20 μm, to 50 μm in the vertical plane, corresponding to
around 8 σy , for a vertical beam size of 6.3 μm, for the in-
jected normalized emittances of 63 μm.rad and 1.5 μm.rad,
respectively. The diffusion map reproduces as well the re-
duction of the DA for horizontal amplitudes as compared
to the positive ones.

Figure 3: Diffusion map for on-momentum particles of the
CLIC damping ring.

In Fig. 4, the frequency map is presented for particles
with momentum spread of +0.5%. Even if the sextupoles
strengths are tuned to eliminate chromaticity in MADX and
then fed to the symplectic tracking code, there is a large
tune-shift with momentum. MADX includes the effect of
dipoles fringe fields which are predominantly sextupole-
like and contribute to chromaticity. This may be ampli-
fied by modeling the wigglers as a series of small dipoles
with alternating polarity. On the other hand, the symplec-

tic tracking code does not include fringe-field effects and
this can explain the observed discrepancy. The above men-
tioned observation about the tune-shift with amplitude re-
mains. The diffusion maps in Fig. 5 for momentum spread
of±0.5% indicate the reduction of the DA especially in the
negative case, as it was observed in the MADX-ptc track-
ing but the comparison can not be conclusive due to the
difference in chromaticity with MADX-ptc.

Figure 4: Frequency map for particles with momentum
spread of +0.5%.

In conclusion, the symplectic integrator SABA2C com-
bined with frequency map analysis are proved to be ro-
bust tools for analyzing the CLIC damping rings non-
linear dynamics. The agreement between the integrator
and MADX-ptc is quite good for on-momentum particles.
The next steps is the inclusion of fringe-field effects which
will alleviate the discrepancy in the chromaticity, the cor-
rect modeling of the wigglers and introduction of non-
interleaved schemes with more sextupole families.

Figure 5: Diffusion map for particles with momentum
spread of +0.5% (left) and -0.5% (right).
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