
AUTOMATIC IMPLEMENTATION OF RADIATION PROTECTION
ALGORITHMS IN PROGRAMS GENERATED BY GCC COMPILER

A. Piotrowski∗, D. Makowski, Sz. Tarnowski, A. Napieralski, DMCS, TUL, Lodz, Poland

Abstract

Radiation influence on the microprocessor-based sys-
tems is a serious problem especially in places like acceler-
ators and synchrotrons, where sophisticated digital devices
operate closely to the radiation source. Reliability of such
systems has significantly decreased due to effects like SEU
or SEFI. One of the possible solutions to increase the ra-
diation immunity of the microprocessor systems is a strict
programming approach known as Software Implemented
Hardware Fault Tolerance. SIHFT methods are based on
the redundancy of the variables or procedures. Sophisti-
cated algorithms are used to check the correctness of the
control flow in the application. Unfortunately, a manual
implementation of presented algorithms is difficult and can
introduce additional problems with program functionality
caused by human errors. Proposed solution is based on the
modifications of the source code of the C language com-
piler. Protection methods are applied at intermediate rep-
resentation of the compiled source code. This approach
makes it possible to use standard optimization algorithms
during compilation. In addition, a responsibility for imple-
menting fault tolerant is transferred to the compiler and is
transparent for programmers.

INTRODUCTION

The Software Implemented Hardware Fault Tolerance
(SIHFT) is a set of algorithms designed to increase relia-
bility and availability of the microprocessor-based systems
working in the radiation environment. This is a strict soft-
ware solution implemented in a high level programming
language before the compilation process. According to this
paradigm, program not only has to satisfy functional spec-
ification, but also has to use special algorithms to monitor
functionality, detect, signal and correct hardware errors [1].
SIHFT was designed to protect systems against soft-errors
called SEU – Single Event Upset, induced by energetic par-
ticles which perform localized ionization events that alter
internal data stored in memory or microprocessor registers.

In this paper authors present a new approach to the
automatic insertion of SIHFT methods. Several articles
and books [2, 3] describe in details theoretical informa-
tion about software implemented protection algorithms but
problem of efficient and error-proof installation of this
methods has been always omitted. Manual implementation
is a good solution for small projects but is not sufficient for
large source code. What is more important, it can be the
source of new errors introduced by the programmers.

∗ komam@dmcs.pl

The new solution is based on automatic implementation
of SIHFT algorithms during the compilation process. Sev-
eral modifications of software methods were proposed to
make theoretical algorithms possible to automatic installa-
tion. This paper primarily concerns an arrays and pointer-
referenced array protection algorithms.

ARRAY PROTECTION ALGORITHM

Arrays are the most common and important composite
data types. In most programming language implementa-
tions they are stored in a continuous location in memory.
Coherence of the whole array variable depends on the co-
herence of each element separately. Owing to large size
of occupied memory, arrays are more sensitive to radiation
than simple type variables. For that reasons, independently
on the number of dimensions, they are handled as matri-
ces and protected by appropriate row and column check-
sums based on exclusive disjunction operation. A content
of array is treated as a set of unsigned values stored into
2-dimensional matrix, independent on real type of data.
Checksum information is kept separately from original ma-
trix into additional variable declared and initialized respec-
tively during the compilation and execution of the program.
Memory overhead introduced by the algorithm mainly cor-
respond to the number of elements in the array, see fig-
ure 1. Percentage overhead of the occupied memory de-

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300

M
e
m
o
r
y

o
v
e
r
h
e
a
d

[
%
]

Table size [elements]

Figure 1: The ratio of number of additional data to an array
size expressed in percent in function of array size

creases when the matrix size increases. Automatic installa-
tion of array protection algorithm was implemented in the
gcc compile as independent stage of the compilation pro-
cess. Detailed information about proposed solution is pre-
sented in [4].

Proceedings of EPAC08, Genoa, Italy MOPD031

06 Instrumentation, Controls, Feedback & Operational Aspects T18 Radiation Monitoring and Safety

517

POINTER PROTECTION ALGORITHM

Pointer is a variable which value is a reference to some
object. In many C programs it is used instead of the sub-
scripts to iterate over the elements of array. In firmware
for embedded systems, pointers are often utilized to get ac-
cess to the structured data stored in communication buffers.
For that reasons, if pointers are used to assure access to
protected arrays, additional mechanism must be applied
to keep integrity of data. The main problem with point-
ers is the element it aliases may change over the time. In
most cases it is not possible to predict during the compila-
tion process which object will be pointed during the run-
time. Constructions like conditional statements or loops
introduce ambiguity to the pointer analyses. To solve this
problem and protect arrays accessed by the aliases, array
protection algorithm is applied however pointed objects are
determined not until the execution of the program.

To protect arrays accessed by the pointers several trans-
formations must be introduced to the source code. They are
implemented according to the following rules.

• every read and write operation performed on protected
array by pointer must be guarded by the array protec-
tion algorithm,

• for every pointer that perform access to protected ar-
ray, additional variable describing aliased object must
be introduced,

• for every assignment operation to protected pointer,
assignment to variable describing aliases object must
be performed. Operation continuity must be saved
across the entire program.

Regrettably, rules two and three can be a source of unneces-
sary operations. Basic version of the protection algorithm
requires update of variable describing pointed object for ev-
ery assign operation. Nevertheless, this is necessary only if
assignment to the pointer is performed in parallel with at
least two flow graph edges. Optimization presents below
solves this problem and allows to decrease size of the final
version of application and increase efficiency of the hard-
ened program.

A routine to implement the pointer-referenced array pro-
tection algorithm is given in figure 2. The presented pro-
cedure performs so-called recursive depth-first search to
find every assignment operation for protected variable. The
base blocks are visited in the preorder. The data flow for
each protected pointer is monitored and analyzed.

Implementation in GCC Compiler

The presented solution was implemented as separate
stage of compilation process in the gcc compiler. Addi-
tional command line parameters -seu-protection-pointers-
on and -seu-protection-pointers-off were introduced to en-
able or disable insertion of the protection method.

Pointers, in contrast to arrays, are not protected by
default. For that reason programmer must explicitly

DirType = enum {indirect, direct}
typeof : Statement → DirType
fdir : DirType
t : Statement
assigns : set of (set of Statement)

procedure ppa (bb : Node, ptr val : Variable)
begin

for each statement s ∈ bb do
if s is an assignment to ptr val pointer then

t := s
fdir := typeof(s)

if s is an read/write pointed variable then
protect(s, t, fdir)

if bb ∈ DF + then
if t /∈ assigns[bb] then

assigns[bb] := assigns[bb]∪ t

if | assigns[bb] |> 1 then
update(t)
fdir := indirect

for each y ∈ succ(bb) do
if | succ(bb) | > 1 then

push(t)
ppa(y, ptr val)
if | succ(bb) | > 1 then

t := pop()
fdir := typeof(t)

end
begin

for each ptr val ∈ set of protected pointers do
ppa(ENTRY, ptr val)

end

Figure 2: A routine to implement pointer-referenced ar-
ray protection algorithm in the intermediate representa-
tion of source code

select which variable will be hardened. If particu-
lar pointer must be protected by the algorithm, vari-
able has to be defined with the additional attribute
called ”seu pointer protection” i.e. type t *ptr attribute
(seu pointer protection);. The access to protected array is
possible only by hardened pointers. The compiler checks
the coherence of the pointer-referenced read and write op-
erations and signal error in the case of inconsistency. For
simple test program, shown in listing 1, debugging dump
of the intermediate language tree after installation of the
protection methods is presented in listing 2. For every
protected array, additional structure SEU PROT TABLE
designed to keep information required by the array pro-
tection algorithm is introduced. Each of protected point-
ers have variable describing aliases object - pointers to a

SEU PROT TABLE structures. The assignment to this
variable is performed according to algorithm presented in
figure 2. Functions seu t crc cac and seu t crc r are

MOPD031 Proceedings of EPAC08, Genoa, Italy

06 Instrumentation, Controls, Feedback & Operational Aspects

518

T18 Radiation Monitoring and Safety

used to respectively calculate the checksums and, if neces-
sary, correct the array contents, and recalculate the check-
sums after the array changes. The detail information about
the implementation of array protection algorithm is de-
scribed in [4].

i n t main () {
i n t ∗ p t r

a t t r i b u t e ((s e u p o i n t e r p r o t e c t i o n)) ;
i n t t a b 2 [3 2] ;
i n t t a b 1 [3 2] ;
i n t D. 1 5 4 4 ;

<bb 2>:
D.1544 = g e t i n t () ;
i f (D.1544 > 2) goto <L0> e l s e goto <L5>

<L5> : ;
p t r = &t a b 2 ;
goto <bb 5> (<L2>) ;

<L0> : ;
t a b 1 [1] = 7 ;
p t r = &t a b 1 ;

<L2> : ;
∗ p t r = 1 ;
re turn 0 ;

}
Listing 1: Example of the intermediate representation of
source code without implemented pointer-referenced array
protection algorithm

main () {
unsigned char s e u c r c t a b 1 . 1 [5 2] ;
s t r u c t SEU PROT TABLE s e u t a b 1 . 2 ;
unsigned char s e u c r c t a b 2 . 3 [5 2] ;
s t r u c t SEU PROT TABLE s e u t a b 2 . 4 ;
s t r u c t SEU PROT TABLE ∗ s e u p t r . 5 ;

i n t ∗ p t r
a t t r i b u t e ((s e u p o i n t e r p r o t e c t i o n)) ;

i n t t a b 2 [3 2] ;
i n t t a b 1 [3 2] ;
i n t D. 1 5 4 4 ;

<bb 2>:
D.1544 = g e t i n t () ;
i f (D.1544 > 2) goto <L0> e l s e goto <L5>

<L5> : ;
p t r = &t a b 2 ;

s e u p r o t p t r . 5 = & s e u p r o t t a b 2 . 4 ;
goto <bb 5> (<L2>) ;

<L0> : ;
t a b 1 [1] = 7 ;
p t r = &t a b 1 ;

s e u p r o t p t r . 5 = & s e u p r o t t a b 1 . 2 ;
<L2> : ;

s e u t c r c c a c (s e u p r o t p t r . 5) ;
∗ p t r = 1 ;

s e u t c r c r (s e u p r o t p t r . 5) ;
re turn 0 ;

}
Listing 2: Example of the intermediate representation of
source code with implemented pointer-referenced array
protection algorithm

Source Code Overhead

The number of additional assignment to the pointer de-
scribing aliases object is a function of the program control
flow structure and the assignments to protected pointer. In
the most pessimistic case, for each assignment additional
update of variable describing aliases object is introduced.
Let each node n in control flow graph have A(n) original
assignments to the pointer. The program expands from size∑

n A(n) to size
∑

n (A(n) + A′(n)) where A’(n) is an as-
signment to the variable describing the pointed object and
A(n) ≤ A′(n).

CONCLUSIONS

Earlier conducted experiments i.e. [5], proved that the
array protection algorithm can be used to increase the relia-
bility and availability of the microprocessor-based systems
working in the radiation environment. Pointer-referenced
array protection is an extension of array protection de-
signed for automatic insertion during the compilation pro-
cess. It requires a detailed data and control flow analysis.
The main drawbacks of presented methods are increase of a
final code size and a decrease of program efficiency. Both
disadvantages result from additional operations like com-
parisons and execution of functions inserted in program to
increase reliability of the system. This two methods to-
gether form a part of more complex solution for the prob-
lem of radiation influence on microprocessor-based sys-
tems called Software Implemented Hardware Fault Toler-
ance.

REFERENCES

[1] O. Goloubeva and M. Rebaudengo and M. Sonza Reorda and
M. Violante. Software-Implemented Hardware Fault Toler-
ance. Springer Science+Business Media, LLC, 2006.

[2] O. Goloubeva and M. Rebaudengo and M. Sonza Reorda and
M. Violante. Soft-error detection using control flow asser-
tions. 18th IEEE International Symposium on Defect and
Fault Tolerance in VLSI Systems (DFT’03), page 581, 2003.

[3] O. Goloubeva and M. Rebaudengo and M. Sonza Reorda and
M. Violante. Improved software-based processor control-
flow errors detection technique. The Annual Reliability and
Maintainability Symposium, Session 14B, 2005.

[4] A. Piotrowski and D. Makowski and G. Jablonski and S.
Tarnowski and A. Napieralski. Hardware fault tolerance
implemented in software at the compiler level with spe-
cial emphasis on array-variable protection. MIXDES 2008
- Mixed Design of Integrated Circuits and Systems, June 19-
21, Poznań (Poland), 2008.

[5] A. Piotrowski and D. Makowski and Sz. Tarnowski and A.
Napieralski. Radtest - Testing board for the software imple-
mented hardware fault tolerance research. MIXDES 2007 -
Mixed Design of Integrated Circuits and Systems, June 21-
23, Ciechocinek (Poland), 2007.

Proceedings of EPAC08, Genoa, Italy MOPD031

06 Instrumentation, Controls, Feedback & Operational Aspects T18 Radiation Monitoring and Safety

519

