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Abstract 
The Large Hadron Collider (LHC) at CERN will be 

commissioned very soon. Improvements of the LHC 
injection complex are considered in the upgrade 
possibilities. In the injection complex it is considered that 
the aging Proton Synchrotron (PS) would be replaced 
with a new fast cycling synchrotron PS2. The energy 
range would be from 5-50 GeV with a repetition rate of 
0.3 Hz. This is a report on the PS2 lattice design using the 
Flexible Momentum Compaction (FMC) method*. The 
design is trying to fulfil many requirements: high 
compaction factor, racetrack shape with two long zero 
dispersion straight sections, circumference fixed to a 
value of 1346.4 meters (CPS2=15/77 CPS with h=180), 
using normal conducting magnets and avoiding the 
transition energy. 

INTRODUCTION 
Going through transition energy during acceleration 

introduces very serious problems as the bunch length 
becomes very small with very large momentum spread. 
The longitudinal motion is frozen and due to non-linear 
chromatic effect particles with different momentum pass 
the transition at different time creating the longitudinal 
phase distortions. Instabilities can occur at transition: the 
fast transverse instability, the microwave instability, 
electron cloud instability, et cetera. Transition occurs at 
the moment when the relativistic factor γ becomes equal 
to transition energy γ = γT. The equation of the 
synchrotron motion is: 
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where α is the momentum compaction: 
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where θi is a bending angle of the dipole ’i’. A lattice 
design method to avoid the transition crossing had been 
previously presented [2]. To avoid transition crossing the 
transition γT has to be outside of the range of acceleration 
or be an imaginary number. This is possible if the total 
horizontal dispersion through dipoles has negative value: 
Σi Di θi, < 0. The method is best explained by the 
Floquet’s transformation and “normalized dispersion” 
function [2]: 
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The vector D'x√β  >  θi√β  represents the dipole effect 
on the dispersion function. These vectors need to be 
within the negative part of the χ axis making the negative 
momentum compaction and avoiding the transition. 

PS2 REQUIREMENTS 
The PS2 is assumed to be normal conducting machine 

[1] with a maximum ramp rate of 1.5 T/s, and constraints 
are presented in Table 1. The demand for brighter and 
more intense beams requires many different beam 
manipulations. These impose constraints on the possible 
value of γT that can be considered. 

Table 1: Constraints for the PS2 

Basic beam parameters Required This example 

Kinetic energy: Inj. [GeV] 4 4 

Extraction [GeV] 50 50 

Circumference [m] 1346.4 1346.4 

Transition energy [GeV] 10 i 11.6 i 

Max. Bending field [T] < 1.8 1.73 

Max. Dispersion [m] < 6 -4.27 < Dx < 3.26 

Max. Beta functions [m] < 60 53.3 

Max. Gradient [T/m] < 17 18.6 

 

LATTICE DESIGN 
The racetrack design includes two zero dispersion 

straight sections for extraction and injection or for the RF 
control. The lattice design is modular: the arc basic cell 
provides the negative momentum compaction with a high 
filling factor and easy chromatic correction. Magnet 
properties in the arc module are shown in Table 2. The 
gradients of the strong focusing and defocusing 
quadrupoles (two doublets in the middle of the module) 
are Gf =16.4 T/m and Gd =−17.4 T/m, respectively. All 
dipoles are 3.3 m long, with the maximum magnetic field 
of 1.74 T. Lengths of the focusing and defocusing 
quadrupoles, are 1.5 m and 0.8 meters, respectively. 
Lattice functions of an arc module are shown in Fig. 1. 
Note that the dispersion function (green color) is 
oscillating between the positive and negative values with 
negative part mostly in dipoles. The arc modules use the 
separated function magnets. 
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Table 2:  Magnet and arc module properties 

Magnet l(m) G(T/m) β@Q(m) βmax(m) Dx(m) 

QFS 1.5 16.4 24.0  50.68 3.28 

QD 0.8 -17.4 45.9 45.9 0.07 

B 3.3 0.0 1.74 T 38.4 -4.24 

 

 
Figure 1: Betatron functions in the arc module. 

The oscillation of the dispersion function induces 
offsets for particles with momentum offsets δp/p=±1%, as 
shown in Fig. 2. 

 
Figure 2: Orbits magnified 100 times in the arc block with 
different momentum in the range δp/p=±1%. 

Chromaticity Correction  
The chromaticity correction sextupoles are placed at the 

positions at the maximum of the corresponding betatron 
and dispersion functions (SextH, SextY, SextX1, and SextY1 
in Fig. 1). The strengths of the sextupoles are −0.034 m-2, 
and −0.042 m-2, 0.035 m-2, and 0.050 m-2. The tunes in 
this example, νx~0.809 and νy~0.671 produce negligible 
sextupole induced tune shifts presented as: 
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where Jx and Jy are the horizontal and vertical beam 
actions, respectively. The most favourable horizontal and 

vertical tunes for the complete cancellation of the 
variation of tune shift with amplitude in the arc block are 
νx~0.75 and νy~0.5. 
 
Matching the Arc Blocks to the Straights 

In order to produce zero dispersion in the straight 
sections a “missing dispersion suppressor” is used.  
Matching optics is obtained by using the arc block with 
missing dipoles and positioning the remaining dipoles at 
locations so as to provide the dispersion function match to 
the straight section FODO cells. The zero dispersion 
matching is presented in the normalized dispersion space 
in Fig. 3. The dipole vectors and their effect on the 
normalized dispersion are shown in Fig. 3.  A slope in the 
dipole vectors with respect to the χ-axis is due to the 
betatron phase through the dipoles. 

 
Figure 3: Normalized dispersion for the matching (blue 
colour) and arc cell (red colour), “B” is the bending 
magnet, while “Q” is the quadrupole. 

The matching sections with arc cells and the straight 
section FODO cells at the both ends are shown in Fig. 4.  

 
Figure 4: Matching of the arc cells to the zero dispersion 
straight sections. 

Dipoles are displayed in a blue, while the quadrupoles are 
presented in red colors. The dispersion function is equal 
to zero at the end of the matching cells or beginning of 
the straight section FODO cells.  
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The Straight Sections 
The horizontal betatron phase advance per cell in the 

straight sections is set to vx=89.1o to allow easy beam 
extraction and injection. The vertical phase advance per 
cell is vy=69.1o.  For a cell length of 25.2 meters this 
makes the maximum betatron functions of βx=39.8 m and 
βy=45 m.  The defocusing and focusing quadrupole 
lengths and gradients are lQD=1.15 and lQF=1.05 m, and 
GD=−14.4 T/m and GF=18 T/m, respectively. The useful 
drift space between the quadrupoles in the straight section 
is 11.5 m. Dispersion is zero in the straight sections. The 
arrangement of cells shown in Fig. 5 presents the straight 
section matching in more detail. The Fig. 5 shows the 
betatron functions in the whole racetrack.  

 
Figure 5:  Horizontal and vertical betatron functions in the 
whole PS2 racetrack. 

Dispersion function in the racetrack is shown in Fig.6. 

 
Figure 6: The dispersion function in the racetrack. 

Chromaticity Correction of the Whole 
Racetrack 

The horizontal and vertical tunes for the whole 
racetrack in this lattice are νx=14.432 and νy =11.424, 
respectively. The natural chromaticities of this PS2 
example are ξx = -20.4 and ξy=-17.3. The sextupole 
induced tune variations with amplitudes after the 
chomaticity corrections are: 
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The strengths of the sextupoles are −0.047 m-2, and 
−0.080 m-2, 0.035 m-2, and 0.050 m-2. The correction is 
without optimization as the previous values of one pair of 
the sextupoles are unchanged. Possible layout of PS2 is 
shown in Fig. 7. 

 
Figure 7: Possible layout of PS2. 

SUMMARY 
A PS2 design for a 4-50 GeV accelerator without 

transition energy would replace the existing aging PS 
machine. The transition energy is imaginary γT= i 11.57 
simplifying the whole acceleration process. It has been 
previously shown [4] that tunability of this design is 
excellent. The length of the straight sections is Ls=153 
meters. Machine parameters are presented in Table 3. 

Table 4: Lattice parameters  

γT βx(m) βy(m) ξx(m) ξy(m) Dx(m) 

 i 11.57 53 45.5 −20.4 −17.3 -4.3 – 3.3 

 
The lengths of two straight sections are 153 m long. 
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