A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  

Rehm, G.

Paper Title Page
MOD1A01 Digital EBPMs at Diamond: Operational Experience and Integration into a Fast Global Orbit Feedback 24
 
  • G. Rehm, M. G. Abbott, J. Rowland, I. Uzun
    Diamond, Oxfordshire
 
  We present out experience with the Libera EBPM during the first months of operation at Diamond. Measurement noise and beam current dependence with beam are compared to earlier lab measurements. Where discrepancies between the performance in the lab and in the application are observed, the causes have been investigated. Furthermore, results of the integration of the EBPMs into a FOFB system are presented, including measurements of orbit motion spectra with and without FOFB.  
TUPC19 Matlab Code for BPM Button Geometry Computation 186
 
  • A. Olmos, F. Pérez
    ALBA, Bellaterra
  • G. Rehm
    Diamond, Oxfordshire
 
  Third generation Synchrotron Light Sources with vertical beam sizes down to few microns require beam resolutions on the submicron level. Study of different Beam Position Monitors (BPM) geometries has been done to reach such tight requirements. The used Matlab Graphical User Interface (GUI) is based on the simulation of a charged particle inside a selectable vacuum chamber type, computing the induced signal that it produces on the button feedthroughs. Needed parameters for the computation are the button electrode dimensions, vacuum chamber profile, electron beam current and measurement bandwidth. Output results from the GUI are the induced power on the feedthroughs, BPM sensitivity and intrinsic resolution of the analyzed geometry. As sensitivity and resolution are BPM geometry dependent terms, the Matlab GUI turned out to be an easy and fast way for first step geometry analysis.  
WEPB25 Time Domain Measurements at Diamond 289
 
  • C. A. Thomas, G. Rehm
    Diamond, Oxfordshire
 
  We present a set of four complementary measurements of the synchrotron visible light to characterise the stored electron beam at Diamond in the time domain. The electron bunch profiles and its evolution is measured with picosecond accuracy using a dual sweep streak camera. The beam dynamics are also given by a fast photodiode connected to a fast oscilloscope. The fill pattern is measured using a time correlated single photon counting system which has a high dynamic range for bunch purity measurement, and a fast averaging card which gives the fill structure with high accuracy within a short integration time. We describe our set of instruments, discuss their performance and show first results from measurements of Diamond's properties.  
WEPB28 First Tests of the Transverse Multibunch Feedback at Diamond 295
 
  • A. F.D. Morgan, G. Rehm, I. Uzun
    Diamond, Oxfordshire
 
  This paper describes the design and initial tests of the transverse multibunch feedback system under development at Diamond. The system is designed to damp instabilities up to 250MHz in both the vertical and horizontal plane. This will lead to an increase of instability thresholds which will permit a reduction of chromaticity and thus should improve dynamic aperture and life time.