A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  

Peters, A.

Paper Title Page
TUPB06 First Tests with the Sis18 Digital BPM System* 66
 
  • A. A. Galatis, P. Forck, K. Lang, A. Peters
    GSI, Darmstadt
 
  In this paper we describe new approaches for BPM (Beam Position Monitor) measurements, needed in hadron accelerators which have strongly varying beam parameters, such as intensity, accelerating frequency and bunch length. After the data collection and offline evaluation in 2005, first FPGA implementations of algorithms were completed in 2006 and tested at SIS18 and CERN PS. Main aspect of the first tests was the proof of concept in terms of online calculation feasibility. This includes online calculation of the needed integration windows as well as the baseline restoration algorithms. The realization of the hardware and the data handling are discussed. Least squares techniques were used for parametric fitting to gain bunch signal properties which can be used to monitor beam position.

*Founded by EU FP6-Design Studies

 
WEPB30 Current Status of the SQUID Based Cryogenic Current Comparator for Absolute Measurements of the Dark Current of Superconducting RF Accelerator Cavities 301
 
  • K. Knaack, K. Wittenburg
    DESY, Hamburg
  • R. Neubert, S. Nietzsche, F. Schiller, W. Vodel
    FSU Jena, Jena
  • A. Peters
    HIT, Heidelberg
 
  This contribution gives an overview on the current status of a LTS-SQUID based Cryogenic Current Comparator (CCC) for detecting dark currents, generated for example by superconducting cavities for the upcoming X-FEL project. To achieve the maximum possible energy the gradients of the superconducting RF accelerator cavities should be pushed close to the physical limit of 50 MV/m. The so-called dark current of the superconducting RF cavities at strong electric fields may limit the maximum gradient. The absolute measurement of the dark current in correlation with the gradient will give a proper value classify the cavities. The main component of the CCC is a LTS-DC SQUID system which allows us to measure extremely low magnetic fields, caused by extracted dark currents of RF cavities under test. For this reason the SQUID input coil is connected across a toroidal superconducting pick-up coil (inner diameter: about 100 mm) for the passing electron beam. A noise limited current resolution of 40 pA/sqrt(Hz) with a measurement bandwidth of up to 70 kHz was achieved. Design issues and the application for the CHECHIA cavity test stand at DESY as well as experimental results will be discussed.  
WEO3A02 Diagnostic Instrumentation for Medical Accelerator Facilities 381
 
  • M. Schwickert, A. Peters
    GSI, Darmstadt
 
  A number of accelerator facilities are presently emerging for the medical treatment of tumour patients using proton and light ion-beams. Both, the development of relatively compact accelerators and extensive studies on ion-therapy carried out at various accelerator laboratories were prerequisites for the layout of dedicated medical accelerator facilities. This paper focuses on the special demands for beam diagnostic devices during the commissioning and routine operation of a medical accelerator. The proton-therapy project PROSCAN at the Paul-Scherrer-Institute in Villigen/Switzerland exemplifies medical treatment in the frame of a research institute. As examples for dedicated ion-therapy projects the beam diagnostic layout is presented for the CNAO project (Centro Nazionale Adroterapia Oncologica) located in Pavia/Italy and the HIT facility (Heidelberger Ionen Therapie) in Heidelberg/Germany. Beam diagnostic devices of HIT are illustrated and the underlying concept for the type and precision of the devices is explained. Additionally, measurement results of the HIT linac and synchrotron commissioning are presented.