A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  

Khodyachykh, S.

Paper Title Page
TUPB13 Design Considerations of a Spectrometer Dipole Magnet for the Photo Injector Test facility at DESY in Zeuthen (PITZ) 87
 
  • J. Rönsch, J. Rossbach
    Uni HH, Hamburg
  • J. W. Bähr, S. Khodyachykh, S. A. Korepanov, M. Krasilnikov, S. Rimjaem, L. Staykov, F. Stephan
    DESY Zeuthen, Zeuthen
 
  The goal of the Photoinjector Test Facility at DESY in Zeuthen (PITZ) is to test and optimise electron guns for FELs like FLASH and XFEL at DESY in Hamburg and study emittance conservation by using a matched booster cavity. The physical specifications of a second spectrometer for measurements after the booster cavity at the beam momentum range from 4 to 40 MeV/c will be described. It will be used for measurements of the momentum distribution and the longitudinal phase space using two methods. The first method combines the dipole magnet with a RF transverse deflecting cavity, the second combines it with a Cherenkov radiator whose light is measured by a streak camera. Especially the first method is aiming for a good resolution in order to determine slice momentum spread. The design has to meet the demands of all these techniques for a measurement with high resolution and a bunch train containing 7200 pulses of 1nC charge and a repetition rate of 10Hz. Since there is not enough space for a separate beam dump after the dispersive section the beam has to be transported to the dump of the main beamline.  
TUPB23 Design Considerations for Phase Space Tomography Diagnostics at the PITZ Facility 117
 
  • G. Asova, K. Flöttmann
    DESY, Hamburg
  • D. J. Holder, B. D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • S. Khodyachykh, M. Krasilnikov, F. Stephan
    DESY Zeuthen, Zeuthen
 
  A major goal of the Photo Injector Test Facility at DESY in Zeuthen (PITZ) is to build and to optimise high brightness electron sources for SASE FELs where the detailed knowledge of the phase-space density distribution of the electron beam is very important. The current upgrade of the machine includes a diagnostic section suitable for transverse phase space tomography and multiscreen emittance measurement. The designed module should be capable of operation over a range of beam momenta between 15 and 40MeV/c. It mainly consists of four observation screens with three FODO cells in between them. An upstream section of a number quadrupoles is used to match the electron beam Twiss parameters to the tomography section. The design considerations of the tomography section and results from numerical simulations will be presented in this contribution.  
TUPC05 Screen studies at PITZ 153
 
  • R. Spesyvtsev, J. W. Bähr, S. Khodyachykh, L. Staykov
    DESY Zeuthen, Zeuthen
 
  The Photo Injector Test facility at DESY in Zeuthen (PITZ) has been built to test and to optimize electron sources that fulfill the requirements of SASE FEL's such as FLASH and XFEL. Basic properties of the electron beam such as mean momentum, momentum spread, transverse emittance etc. are determined using measurement of the beam size on YAG or OTR screens. Detailed knowledge of the uncertainties and systematic errors associated with these measurements are important to understand the underlying beam physics. The screen stations consist of a screen set-up, an optical transmission line to a CCD camera, and the video data acquisition system. In this paper we make a detailed description of the screen based beam size measurement systems that we use at PITZ and discuss the systematic errors of uncertainties associated with each single element of a system.  
TUPC07 Design and Construction of the Multipurpose Dispersive Section at PITZ 159
 
  • S. Khodyachykh, J. W. Bähr, M. Krasilnikov, A. Oppelt, L. Staykov, F. Stephan
    DESY Zeuthen, Zeuthen
  • T. Garvey
    LAL, Orsay
  • J. Rönsch
    Uni HH, Hamburg
 
  For the characterization of rf photo-electron guns a full set of beam parameters has to be measured. For this purpose a new high energy dispersive arm will be used at the Photo Injector Test Facility at DESY in Zeuthen (PITZ) in addition to the existing beam diagnostics. The multipurpose dispersive arm (HEDA1) is designed [1] for an electron energy range up to 40 MeV and will be put into operation in autumn 2007. It combines the functionality of (i) an electron spectrometer, (ii) a device for the characterization of the longitudinal phase space, and (iii) a transverse slice emittance measuring system. HEDA1 consists of a 180 degree dipole magnet followed by a slit, a quadrupole magnet, and two screen stations. One of the screen stations will be equipped with an optical read-out for a streak camera. We report about the detailed design of individual components and the construction progress.

[1] S. Khodyachykh, et al., Proccedings of the 28th International FEL Conference, Berlin (2006).