A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  

Kaufmann, W.

Paper Title Page
TUPB16 Optimization of the Linear-cut Beam Position Monitors Based on Finite Element Methods 96
 
  • P. Kowina, W. Kaufmann, J. Schölles
    GSI, Darmstadt
 
  This contribution presents simulations of the Beam Position Monitors (BPMs) for the FAIR project that were performed using CST Studio Suite 2006B. The linear-cut BPMs based on a metal-coated ceramics were considered as the only solution that meets the required mechanical stability under cryogenic conditions. The essential BPM features like position sensitivity or linearity of position determination were compared for two geometries. In these geometries, in both cases based on elliptically shaped ceramic pipe, the vertical and horizontal electrode pairs were either mounted subsequently in series or were spirally shaped and combined alternatively within one unit. It is shown that optimization of BPM design increases position sensitivity by more than a factor of two. The frequency dependence of the position sensitivity and an offset of electrical center of BPM in respect to its geometrical center were analyzed in the bandwidth of 200 MHz. In a frequency range up to 100 MHz (i.e. typical for the BPM applications) calculated variations of the displacement sensitivity are smaller than 1%; the careful design of a guard ring configuration allows keeping the offset consistent with zero.