A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  

Gabor, C.

Paper Title Page
TUPB11 A laserwire beam profile measuring device for the RAL Front End Test Stand 81
 
  • D. A. Lee, P. Savage
    Imperial College of Science and Technology, Department of Physics, London
  • C. Gabor
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • J. K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon
 
  The Front End Test Stand at the Rutherford Appleton Laboratory (RAL) is being developed to demonstrate a chopped H- beam of 60 mA at 3 MeV with 50 pps and sufficiently high beam quality for future high-powered proton accelerators. As such, it requires a suite of diagnostic instruments to provide detailed measurements of the ion beam. Due to the high beam brightness and a desire to be able to have online instrumentation, a series of non-intrusive and non-destructive diagnostics based on laser-detachment are being developed. The progress that has been made towards construction of a laserwire instrument that can measure the beam profile at an arbitrary angle are described. In particular, the principle behind the instrument, the simulation and design of it and the vacuum vessel in which it will be mounted are given. In addition, the reconstruction software that will be used to reconstruct the 2D transverse beam density distribution from the profiles of the beam is described.  
WEO2A01 Beam Diagnostics for the Front End Test Stand at RAL 218
 
  • S. Jolly, D. A. Lee, P. Savage
    Imperial College of Science and Technology, Department of Physics, London
  • D. C. Faircloth, J. K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon
  • C. Gabor
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
 
  The Front End Test Stand (FETS) at the Rutherford Appleton Laboratory (RAL) is intended to demonstrate the early stages of acceleration (0-3MeV) and beam chopping required for high power proton accelerators, including proton drivers for pulsed neutron spallation sources and neutrino factories. The FETS ion source is required to produce a 60 mA beam in pulses up to 2ms long at up to 50 pps with an RMS emittance of 0.3 π mm mrad. A number of different diagnostic systems are currently under development to provide precise measurements of the H- ion beam. A pepperpot emittance measurement system, which is also capable of high resolution transverse beam density measurements, has been designed for use on the ISIS ion source development rig. This system is capable of sub-microsecond time-resolved measurements at a range of positions along the beam axis. Details are given of the improvements to the current design, including extensive tests on suitable scintillators and emittance and profile measurements are presented. Additionally, the designs of two different novel laser diagnostic systems for FETS are also presented.