A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  

Craievich, P.

Paper Title Page
TUPC09 Design of the cavity BPM system for FERMI@elettra 165
 
  • P. Craievich, C. Bontoiu, M. Ferianis, G. Trovato
    ELETTRA, Basovizza, Trieste
  • M. Poggi
    INFN/LNL, Legnaro, Padova
  • V. V. Smaluk
    BINP SB RAS, Novosibirsk
 
  The cavity Beam Position Monitor (BPM) is a fundamental instrument for a seeded FEL, as FERMI@elettra. It allows the measurement of the bunch trajectory non-destructively, on a shot-by shot basis and with sub-micron resolution. The high resolution the cavity BPM is providing relies on the excitation of the dipole mode, originated when the bunch passes off axis in the cavity. Here we present the electromagnetic (EM) design and the cold test of the prototype BPM developed for the FERMI@elettra. The design adopted a C-band cavity with its dipole mode at fDIP=6.5GHz. The prototype is actually fitted with two cavities: one for the position measurement and one for the generation of the reference signal for the demodulator. Furthermore, the design of the prototype electronics for the acquisition and processing of the BPM signals is presented. The adopted scheme consists of a down converter from C-band to the intermediate frequency, followed by an IQ demodulator to generate the base-band signal, proportional to the transverse beam position. The performed simulation session is presented as well which we run before building the hardware for bench tests.  
TUPC10 A transverse RF deflecting cavity for the FERMI@elettra project 168
 
  • P. Craievich, S. Di Mitri, M. Ferianis, M. Veronese
    ELETTRA, Basovizza, Trieste
  • D. Alesini
    INFN/LNF, Frascati (Roma)
  • M. Petronio
    DEEI, Trieste
 
  The layout of FERMI@elettra includes a high energy transfer line (TL) which brings the accelerated electron bunch to the FEL undulator chains. The TL optics has been designed according to several space constraints and with the purpose of including diagnostics for the complete characterization of the electron bunch just before the FEL process starts. Basing on such optics, this paper reports the study of the electron bunch deflection at nominal energy of 1.2 GeV for the measurement of the bunch length, of the transverse slice emittance and of the slice energy spread, coupled to a downstream dipole. The effect of the cavity on the electron beam was simulated by tracking code and the specification on the deflecting voltage was thus confirmed. Furthermore the RF design and electromagnetic simulations are also presented here.  
WEO1A03 Instrumentation for Longitudinal Beam Gymnastics in FEL's and in the CLIC test facility 3 215
 
  • T. Lefèvre, H.-H. Braun, E. Bravin, S. Burger, R. Corsini, S. Döbert, L. Søby, F. Tecker, P. Urschütz, C. P. Welsch
    CERN, Geneva
  • D. Alesini, C. Biscari, B. Buonomo, O. Coiro, A. Ghigo, F. Marcellini, B. Preger
    INFN/LNF, Frascati (Roma)
  • P. Craievich, M. Ferianis, M. Veronese
    ELETTRA, Basovizza, Trieste
  • A. E. Dabrowski, M. Velasco
    NU, Evanston
  • A. Ferrari
    UU/ISV, Uppsala
 
  Built at CERN by an international collaboration, the CLIC Test Facility 3 (CTF3) aims at demonstrating the feasibility of a high luminosity 3TeV e+-e- collider by the year 2010. One of the main issues to be demonstrated is the generation of a high average current (30A) high frequency (12GHz) bunched beam by means of RF manipulation. At the same time, Free Electron Lasers (FEL) are developed in several places all over the world with the aim of providing high brilliance photon sources. These machines all rely on the production of high peak current electron bunches. The required performances put high demands on the diagnostic equipment and innovative longitudinal monitors have been developed during the past years. This paper gives an overview of the longitudinal instrumentation developed at ELETTRA and CTF3, where a special effort was made in order to implement at the same time non-intercepting devices for online monitoring, and destructive diagnostics which have the advantage of providing more detailed information.