
PERSONAL COMPUTER CONTROL SYSTEM FOR THE TAMU 
K-SOO CYCLOTRON 

D. R. Haenni, T. Cowden, C. Hargis, J. Reimund, and R. C. Rogers 

Cyclotron Institute, Texas A&M University, 
College Station, Texas 77843 USA 

ABSTRACT 

A highly-responsive, parallel-processing control system has 
been constructed for the TAMU K-500 cyclotron. It is based on 
networked IBM PC-XT type computers. Hardware features 
include interfacing via a high-speed, memory-mapped, byte-wide 
data highway and a simple push button control console which gives 
immediate access to a large number of controls. Software is 
written in a special version of FORTH. A program generator 
developed around a data base helps to produce code for the 
individual computers. The system does not maintain a centralized 
on-line data base but rather relies on direct hardware access for 
necessary values. All network communications use plain text 
messages. The control system has provided reliable, continuous 
service since the initial operation of the accelerator. The system is 
still being expanded as funds, interfacing, and manpower permit. 

INTRODUCTION - DESIGN GOALS 

The design of the computerized control system for the K-500 
superconducting cyclotron at TAMU was arrived at after 
investigating existing control systems at similar sized accelerator 
laboratories and commercial systems. Experiences and insight 
obtained from operating the hard-wired system for the old 88 inch 
cyclotron at TAMU also played a major role in many design 
decisions. The following design goals were developed. 

The control system must: 

1. allow two or more parameters to be adjusted by the 
operator at the same time. 

2. be fast and responsive to operator commands. 
3. have a simple operator interface not requiring unusual 

hand-eye coordination or typing skills. 
4. minimize the number of exceptions to general control 

procedures. 
5. monitor all active parameters for slow drift. 
6. protect against operator blunders. 
7. report system failures. 
8. allow for significant system expansion. 
9. allow for the future addition of complex control 

functions. 

The control system was implemented with a minimum hardware 
budget (about the price of a good sized minicomputer when the 
project began) and manpower (less than two full time hardware 
persons and one software person). 

The first three design goals combined with budget limitations 
eliminated the options of buying or directly copying an existing 
system. The control system which has been implemented is an 
amalgamation of ideas along with some innovation. It meets the 
design goals while remaining within budget and manpower 
constraints. 

CONTROL SYSTEM HARDWARE 

The control system is built around a loosly coupled parallel 
processor consisting of networked Turbo XT clone computers 
which are IBM PC-XT compatible but run at 8 to 10 Mhz. These 
computers were chosen because they have a: 

1. relatively large 1 Mbyte memory address space. 
2. 16 bit processor (Intel 8088). 
3. well documented, open I/O bus which facilitates building 

interface cards. 
4. large general acceptance insuring ample supplies of 

commercial peripherals, software, and documentation. 
5. very low initial cost. 
6. no recurring hardware or software maintenance costs. 

A local area network provides a high-speed data path for messages. 
Arcnet (token ring, 2.5 Mbit/sec, 254 nodes) was chosen for this 
purpose. A commercial interface card provides memory mapped 
I/O buffers and an LSI controller chip which carries out most of the 
message passing tasks. Initially this network was also to provide 
for program downloading. Appropriate network software was not 
available so an IBM PC-Net (broadband) which runs standard IBM 
PC-Network software was installed to provide the downloading 
function. Message passing over Arcnet is managed directly by the 
control system software. 

A simplified schematic diagram of the control system is 
presented in Fig. 1. The processors are shown along with their 
network connections and an indication of the function of each is 
given. Only those systems directly involved in the operation of the 
accelerator connect to the Arcnet. The processors are logically 
divided into three groups: operator interface, accelerator interface, 
and support. The control system software already has provisions 
for the addition of a second full control console. More interface 
computers can be added as necessary. 

The operator interface consists of the control console 
(discussed below) and a network terminal. The latter controls the 
accelerator by typed commands. It was intended as a short term 
debugging tool but has proven useful during regular operation. 
The accelerator interface computers connect to the cyclotron 

Proceedings of the Twelfth International Conference on Cyclotrons and their Applications, Berlin, Germany

264



a:: 
o 

~ 
w 
"­o 

.(?1-GV 
~ 

-- - - -- -- - --- ----

~ 

" ~d 

Fig. 1 Schematic diagram of the control system showing 
computers, network connections, and the major function assigned 
to each system. Dashed computers are planned but not yet 
implemented. All computers use Intel 8088 processors except for 
the file server and programming systems which have 80286 and 
80386 processors, respectively. 

hardware. The support computers provide file serving and a 
programming / gener.al processing platform. The advanced 
function computer will be added when it becomes necessary to 
implement high-order operations such as emittance measurements. 

The various accelerator hardware components are interfaced to 
the control system through industry standard STD-Bus (lEEE-696) 
crates and I/O cards. Normally such crates contain local 
intelligence but here a special driver card accesses the 256 byte I/O 
space of the STD-Bus. Up to 255 such crate drivers can be 
connected to a byte-wide data highway driven by a controller 
which maps to a 64 kbyte segment of the PC memory address 
space. In this way the various STD-Bus I/O cards can be directly 
accessed via memory reference instructions in 2 to 4 Ilsee. The 
highway and crate driver cards were designed and constructed in­
house. Most of the STD-Bus interface cards (TTL and relay I/O) 

Fig. 2 Photograph of the main operator control console. 

are commercial products. An exception to this was the analog 
output (DAC) cards. A card providing either four 12 bit DACs or 2 
pairs of overlapped (coarse / fine, 20 bit resolution) DACs was also 
designed and fabricated in-house. 

Many of the power supplies have both local (front panel) and 
remote (computer) controls. To eliminate calibration problems, the 
local parameter displays use digital panel meters, DPMs, with 
digital outputs that can be connected to TTL I/O cards. Thus both 
sets of controls share common readout devices. There are many 
4.5 and some 5.5 digit DPMs in the system which have much 
higher accuracy than the usual 12 bit ADCs found on most 
commercial analog input boards. 

OPERATOR CONTROL CONSOLE 

In designing the operator console experience gained from the 
hard-wired control system for the 88 inch cyclotron was most 
useful. Stability, consistency, speed, direct access to a large 
number of controls, displaying values in meaningful units, and 
minimization of keystrokes were the most desirable attributes. 
Since tuning the accelerator normally involves adjusting 
parameters while watching the beam on either a current meter or 
beam line phosphor, emphasis was placed on response to 
commands not updating changing value displays. The control 
console does not need graphic displays to accomplish its primary 
function. Higher-level controls or diagnostics which may require 
graphic displays will be added as needed through the advanced 
functions system. 

A picture of the operator console is shown in Fig. 2. It consists 
of four displays, a normal computer keyboard, and a special control 
keyboard. Four computers are stored in the drawers visible from 
the front. Two processors run the control keyboard and associated 
displays. The third provides master controls (currently similar to 
the network terminal) while the fourth handles error logging. The 
floppy disk drives, right hand display, and computer keyboard are 
attached to the master controls computer. 

The control keyboard and the two displays in the center of the 
console are divided into 48 control units. Each control unit can be 
associated with a controllable hardware object called a device in 
this system. A control unit consists of a push button pair along 
with a device name display on the keyboard and a corresponding 
area on a CRT display containing "key caps~ for the push buttons, 
the device name, the value of the controlled parameter with units, 
and general device status (fault, local, on, parameter monitored, 
DAC limit, and device busy). At any time the operator can directly 
activate one of 96 device commands (2 from each of 48 devices) by 
selecting the appropriate push button. 

Proceedings of the Twelfth International Conference on Cyclotrons and their Applications, Berlin, Germany

265



The 48 control units displayed at a given time (screen) may be 
associated with one of 8 different sets (levels) of 96 commands. 
Levels are selected by the right hand set of lighted switches and the 
step size selector (the push button with display just above the 
keypad). For consistency 13 of the 16 possible control unit 
commands are associated with particular device commands. Eight 
of these are increase / decrease commands with large, medium, 
small, and fine step sizes. The others are parameter set, plus / 
minus (polarity changes), status, and reset. If a control unit 
provides any of these commands, then they always show up at "the 
same place" (push button and level). Some control units are only 
for displaying parameters while others like those associated with 
Faraday cup controls provide the same commands on all levels. 
The key cap displays change with each level so that the operator 
knows exactly what commands and push buttons are active at any 
given time. In the worst case four keystrokes are required to 
change from one level to another but in actual operation the 
average is closer to one. The numeric keypad is only used to enter 
values in conjunction with the parameter set operation. 

The console has a maximum of 96 screens (4608 control units / 
73278 commands). The four push buttons with displays at the 
upper right corner of the keyboard can be randomly assigned to any 
screen. Any of the four screens can be activated by a single 
keystroke in slightly over one second. Most of this time is spent 
downloading a new set of device names to the keyboard. A new 
screen can be assigned to this set and activated with three 
keystrokes. The first selects the screen to be replaced and the 
second activates the assign screen function (bottom left hand 
lighted button). Each control unit push button then becomes 
associated with a different screen and the third selects the new 
screen. The screens are kept as overlays on 6 Mbyte ram disks in 
the keyboard and display computers. This type of change is 
accomplished in less than two seconds. Any of the 73278 control 
console commands can be randomly selected with an average of 
5.2 but no more than 7 keystrokes. Since related devices are 
grouped on the screens, the operator usually has direct access to 
needed controls and is not continuously changing screens. 

A control console appears more friendly to the operator when 
the controls are always "in the same place." Therefore the 
assignment of control units to screens is fixed when the display and 
keyboard computer programs are compiled and cannot be 
dynamically changed while the programs are running. Some of the 
control systems investigated while designing this one had the 
equivalent of dynamically assignable screens. This feature was not 
heavily used, however, and these systems were run with essentially 
fixed screen assignments. 

The control keyboard is continuously scanned for push button 
changes. Every 100 ms, commands are issued based on the 
keyboard status and observed changes. Control push buttons can 
be set to repeat commands as long as the button is activated (e.g. 
ramp commands) or to issue a single command per activation (e.g. 
status commands). The keyboard and display computers 
coordinate operations by passing messages over the network. The 
display highlights the key caps corresponding to activated push 
buttons. The hardware interface computers are informed every 
time the control console screen is changed. They in turn send 
value change messages to the display computer only for those 
parameters which are currently displayed. 

The error logging computer displays control system error 
messages on the logging display (left hand one in Fig. 2) and writes 
them to a disk file. In addition, replies to status commands 
requested at the control keyboard are displayed on the logging 
screen. 

GENERAL SYSTEM OPERATION 

Control system operation involves interaction between the 
computers in the operator and accelerator interfaces. The operator 

interface sends control commands to the accelerator interface and 
receives value / status replies. The accelerator interface executes 
the control commands and sends value / status replies. All 
commands and replies are plain text messages. No messages are 
allowed between the accelerator interface computers. Except for 
the control display / keyboard coordination and error messages the 
operator interface computers are also not allowed to communicate 
with each other. 

Each device in the control system is connected to a single 
interface computer. The device driver software is responsible for 
hiding most device hardware details and control procedures from 
the rest of the system. This allows a fixed list of commands to be 
used for controlling all devices. The device driver contains code to 
carry out commands appropriate to the device. The rest of the 
commands in the list produce error messages. Device dri vers are 
also responsible for monitoring the control console screen and 
sending value change messages when appropriate. Unlike many 
other control systems this one does not use an on-line centralized 
data base. Instead the device drivers rely on the high-speed data 
highway to obtain information directly from the accelerator 
hardware. This eliminates a potential I/O and compute bottleneck, 
minimizes the chances of making decisions based on old 
information, and greatly reduces the amount of network message 
traffic. There is one drawback to using intelligent device drivers. 
If the operation of one device depends on information from a 
second then both devices must be interfaced to the same computer. 

The keyboards and displays attached to the accelerator interface 
computers provide a means of entering local control commands. 
Since MS-DOS is a single tasking system, the control system 
programs provide internal cooperative multitasking with 
foreground / background operation. All tasks must either quickly 
terminate or run as regularly scheduled real-time or background 
tasks. Control commands (local and external) and real-time 
operations are run in the foreground on a first come, first serve 
basis. Since there are no extremely time critical functions this 
allows for excellent response to control commands. While waiting 
for foreground commands the programs run background tasks. 
Chief among these is providing value change messages to the 
control panel. 

CONTROL SYSTEM SOFfWARE 

The limited programming manpower available for software 
development dictated that efforts should be made to simplify the 
programming task. The approach taken to develop the control 
system software involves use of program generators (i.e. software 
that helps generate the control system programs) combined with 
reusable code modules. The program generators were developed 
around a data base which contains a description of the control 
system. This approach eliminates problems associated with the 
sharing of details between the various programs by having only a 
single source for such information. It is also possible to design the 
control system programs in such a way that they could be expanded 
or modified by simply changing the data base. The reason for 
employing reusable code modules is obvious. This is one of the 
best ways to minimize the time necessary to code and debug the 
software. Another important way to simplify the software 
development task is to have hardware which compliments the 
software. Many control system design decisions were made with 
this in mind. For example the accelerator hardware interface 
design virtually eliminates software overhead by allowing the 
computer to access the interface as slow memory. 

One of the control system design goals is to standardize global 
operating procedures. In other words control functions at the 
operator console should always look and act the same. If various 
devices require different operating procedures for the same control 
function then the software should hide these details from the 
operator. Minimizing the number of exceptions to the global 

Proceedings of the Twelfth International Conference on Cyclotrons and their Applications, Berlin, Germany

266



operating procedures, which the operator must remember, makes 
the control system more "friendly. n Compensating for a large 
number of exceptions, however, significantly increases software 
complexity especially when trying to develop program generators 
and reusable software modules. Most of the problems encountered 
during software development have arisen from underestimating the 
amount of flexibility needed to cope with differences in control 
procedures. A general rule of thumb might well be "never expect 
to do the same thing twice.n 

The control system software is written in FORTH. This 
language is well suited for control system programming. It allows 
direct hardware access, provides easy integration with assembly 
language code, and fosters a progranuning style which takes every 
advantage of reusable code modules. Details of this somewhat 
different computer language can be found elsewhere. I) FORTH is 
traditionally a 16 bit language. While this matches the structure of 
the 16 bit PC processor, it limits programs to 64 kbytes which is 
too small for the task at hand. Fortunately, FORTH language 
interpreters are relatively easy to develop in assembly language. 
mulFORTH was written to support large control system programs 
by holding multiple FORTH systems in memory and allowing 
program control to pass between them. mulFORTH was designed 
with the express purpose of simplifying control system 
programming. Important features include the ability to have 
position independent FORTH systems as overlays; draw code from 
an external library during compilation; and compile programs from 
ASCII text files. mulFORTH is highly reliable and has been in use 
for over two years. 

The program generation tools were developed with a 
commercial, programmable data base management system, 
Fox Base. Programs written in the FoxBase command language 
extract information from the control system data base and produce 
FORTH code in the form of mulFORTH libraries. A control 
system program can be generated by compiling a "skeleton n 

program which needs code from its corresponding library. The 
skeleton program contains all parts of the control system program 
which are not provided through the library. A single skeleton 
program was developed which generates any of the accelerator 
interface computer programs when compiled with the appropriate 
library. The programs for the operator interface computers, 
however, all require separate skeleton codes. 

Logically, the control system data base should store its' 
information in variable sized records but these are not supported by 
FoxBa<>e. This is circumvented mapping the logical control system 
information into multiple fixed size FoxBase records. To simplify 
working with such a data base, a menu driven editor program has 
been developed which hides this mapping from the user. 

In the areas of general control system information, control unit 
descriptions, and screen organizations the control system data base 
contains essentially system parameters. The code generators 
convert this information primarily into tables which are compiled 
into the programs. To describe a device driver, however, the data 
base must contain both parameters and programming information. 
Initially it was intended that code modules (in the form of FORTH 
defining words) would be written to carry out complete device 
driver commands or operations. The data base would specify a 
single code module and any required parameters for every 
command and real-time I background operation needed to describe 
a device driver. Likewise the data base would specify code 
modules for some support functions (e.g. data highway access, flag 
I timer management, etc.). This approach would have greatly 
simplified device driver programming if the the total number of 
code modules needed to describe the control system stabilized at 
some reasonably small value. The data base would then have 
allowed new devices tQ be added to the control system without 
further programming. After considerable effort this approach 
proved incompatible with the K-500 cyclotron hardware. The 
number of different support functions did tend to stabilize. This 

GENERAL OPERATION PATTERN 

Fig. 3 Program pattern for device driver commands and operations 
consisting of a core function list surrounded by layers of 
conditional tests. A few typical layers are shown using IF (true) 
ELSE (false) THEN constructs. TEST provides a logical value; 
CONT drops to the next layer; EXIT terminates the operation; 
while FUNCl and FUNC2 are functions. 

was mostly a consequence of limiting the number of different 
STD-Bus interface cards allowed in the system. Unfortunately, 
the number of code modules describing commands and operations 
increased in proportion to the number of devices in the system. It 
was found, however, that all of these code modules followed more 
or less a single simple program pattern. Furthermore the modules 
consisted of many small but heavily repeated code fragments. This 
suggested that the number of code modules needed to describe 
device drivers could be stabilized by increasing the complexity of 
the data base. The repeated code fragments would be converted 
into support functions. A command or operation would be­
specified in terms of these new support functions using the 
observed program pattern. In this way the data base takes on 
aspects of a high-level control system programming language. 

The program pattern for commands and operations is shown in 
Fig. 3. It consists of a core action surrounded by layers of 
conditional tests. The core action is just a list of support functions. 
Conditional layers are essentially if ... else ... then(endif) 
constructs. The data base specifies the logic test and the action to 
take on true and false. One may continue to the next lower 
conditional layer and/or execute a support function. Code modules 
have been developed for conditional layers having all combinations 
of continue actions and up to two support functions. More 
complex combinations have not yet been needed. The simplicity of 
the program pattern masks its power. The following sequence is 
necessary to change a trimcoil polarity; ramp the supply to zero 
current, turn it off, change the polarity switch, clear the automatic 
fault, and tum it back on. This sequence is coordinated by a real­
time operation having only 12 conditional layers. 

When expanded into FORTH code the control system programs 
are already in excess of 600,000 lines. This grows as more devices 
and features are added. The software development approach and 
program generation tools described here are sufficient to manage 
even such a large system. 

REFERENCES 

1) Brodie, Leo, Star.!.iruLfQRTH (Prentice-Hall Inc., Englewood 
Cliffs, NJ, USA, 1981). 

Proceedings of the Twelfth International Conference on Cyclotrons and their Applications, Berlin, Germany

267


