LIVINI IV. OT	
NAME OF MACHINE University of Colorado	Isochronous Cyclotron DATE July 1978
INSTITUTION University of Colorado, Nuc	lear Physics Laboratory
ADDRESS Boulder, Colorado 80309 USA	
IN CHARGE J.J. Kraushaar, D.A. Lind	REPORTED by A.B. Phillips
HISTORY AND STATUS	MAGNET
DESIGN, date 1956-57 MODEL tests 1957-59	POLE FACE diameter 132 cm; R extraction 60 cm
ENG. DESIGN, date 1958-61	GAP, min 12 cm; Field kG 0 2 6
CONSTRUCTION, date 1960-62	GAP, min 12 cm; Field kG at 0.3 x 10 ⁶ max 21 cm; Field kG amprocures
FIRST BEAM date (or goal) 1962; full use 1963	AVERAGE FIELD at R ext 12.6 kg
MAJOR ALTERATIONS Added beam transport	CURRENT STABILITY ± 10 parts/10°; $B_{max}/\langle B \rangle 1.25$
system	NUMBER OF SECTORS 4; SPIRAL, max 45 deg
OPERATION, 105 hr/wk; On Target 82 hr/wk	POLE FACE COIL PAIRS: AVF /sec;
	Harmonic correction 1 pair
USERS' SCHEDULING CYCLE 2 -64 weeks	Rad grad 4 /sec or Circ coils WEIGHT: Fe 85 U.S. tons; Coils 14 U.S. tons
COST, ACCELERATOR $\$1.55 \times 10^{6}$ COST, FACILITY, total $\$2.95 \times 10^{6}$	CONDUCTOR, Material and type Cu
FUNDED BYDOE and State of Colorado	STORED ENERGYMJ
TONDED BIDOE and State of Colorado	COOLING SYSTEM <u>Internal distilled water</u>
ACCELERATOR STAFF, OPERATION and DEVELOPMENT	POWER: Main coils 100 max, kW
	Trimming coils <u>48</u> max, k W
SCIENTISTS 3 ENGINEERS 2	YOKE/POLE AREA 130 %
TECHNICIANS 3 CRAFTS 2 GRAD STUDENTS involved during year 0	SECTOR ANGLE (Sep Sec)deg
OPERATED BY X. Res staff or Operators	SECTOR ANGLE (Sep Sec) —— deg ION ENERGY (Bending limit) $E/A = \frac{36}{2} - q^2/A^2$ MeV
BUDGET, op & dev <u>Included in research budg</u> t.	(Focusing limit) $E/A = 28$ q/A MeV
FUNDED BY DOE and State of Colorado	ACCELERATION SYSTEM
RESEARCH STAFF, not included above	DEES, number 1 angle 180 deg
	BEAM APERTURE 3.2 cm; DC BIAS 0 kV
USERS, in house 12 outside 5 GRAD STUDENTS involved during year 15	TUNED by, coarse move short fine auto VC
RES. BUDGET, in house \$1,151,000	RF 6 to 21 mHz, stable \pm 0.5 parts /10 ⁶
FUNDED BY DOE, NIH, and State of Colo.	Orb F 1.2 to 21 mHz; GAIN, max 150 kV/turn
	HARMONICS, RF/Orb F, used 1 & 3 DEE-Gnd, max 85 kV, min gap 2.5 cm
FACILITIES FOR RESEARCH	STABILITY, (pk-pk noise)/(pk RF volt) 4 x 10
2	RF PHASE stable to ± 0.72 deg
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RF POWER input, max 75 kW
movable 12 m ² TARGET STATIONS 7 in 4 rooms	RF PROTECT circuit, speed 5 μsec
STATIONS served at same time, max1	Type dee spark sensor
MAG SPECTROGRAPH, type Energy-loss	FREQUENCY MODULATION, rate/sec
COMPUTER, model PDP-9, PDP-11	MODULATOR, type
OTHER FACILITIES <u>Isotope production</u> ;	BEAM PULSE, width
Irradiation, solid state; Biologi-	VACUUM SYSTEM
cal; Neutron time-of-flight; Fast	PUMPS, No., Type, Size one 20-inch oil diffu-
rabbit; Beam-swinger	sion, one 10-inch oil diffusion
	OPERATING PRESSURE $2 \mu Torr$,
REFERENCES/NOTES	PUMPDOWN TIME 3 hrs
1. J.J. Kraushaar, D.A. Lind, M.E.	ION SOURCES/INJECTION SYSTEM
Rickey, and W.R. Smythe, European	Hooded arc, H ₂ O cooled Cu chimney,
Organization for Nuclear Research	pulsing option
(CERN) Report 63-19, p.31-38 (1963).	EXTRACTION SYSTEM nel
2. D.A. Lind, J.J. Kraushaar, W.R.	Electrostatic deflector, mag. chan-
Smythe, and M.E. Rickey, Nuclear	CONTROL SYSTEM
Inst. & Meth. 18 , 62-65 (1962).	Manual

ENTRY NO. 84 (cont.)

CHARACTERISTIC BEAMS

BEAM PROPERTIES

011/11/10/10/10				
		Goal	Achieved	Measured Conditions
	Particle	(MeV)	(MeV)	Pulse Width $2 RF deg 5 \mu A of 23 MeV p$
ENERGY CURRENT Internal			0.3-28 0.3-18 16-44 2-36 (µA) 200	Phase Exc, max 2 RF deg 5 μ A of 23 MeV p Extract Eff $10-40$ % μ A of 80 MeV Res, Δ E/E 0.05 % 5 μ A of 23 MeV p Emittance $ (\text{mm-mrad}) \left\{ \frac{5.08}{1.83} \text{axial} \right\} \frac{65\% \cdot 5\mu \text{A of } 23}{1.83} \text{ MeV } \frac{p}{p} $
	³ He α		100 _100	OPERATING PROGRAMS, time dist
External	p		40	Basic Nuclear Physics 95 %
	He		20	Solid State Physics%
	a		15	Bio-Medical Applications
				Isotope Production 1%
		(part/s)	(part/s)	Development1%
Secondary				Applied Nuc. Science (Envi- 2 % ronment) %

PLAN VIEW OF FACILITY, NOTEWORTHY FEATURES, OPERATION SUMMARY, ADDITIONAL REFERENCES

Other features and Operation summary:

Hydrogen ion source can be pulsed by control electrode to eliminate beam bursts for time-of-flight measurements. This source has also been used to identify true single-turn extractions.

A beam-swinger capable of delivering beam from -90° to $+135^{\circ}$ on a fixed target supplies input for a fixed 90° energy-loss spectrometer. The spectrometer has a resolution $\Delta E/E = 5 \times 10^{-4}$ and uses a multi-wire proportional chamber. The beam-swinger also varies the scattering angle in experiments using long fixed flight paths of 9 and 30 meters for neutron time-of-flight.

Selected references (continued)

3. D.A. Lind, M.E. Rickey, and B.M. Bardin, Nucl. Instr. & Meth. $\underline{18}$, $\underline{19}$, $\underline{129}$ -134 (1962).

4. Rodman Smythe, Nucl. Instr. & Meth. <u>18</u>, <u>19</u>, 582 (1962).

5. Jon W. Osterlund and Rodman Smythe, IEEE Transaction on Nuclear Science NS-12, No. 3, 174 (1965).

6. R.F. Bentley, L.A. Erb, D.A. Lind, C.D. Zafiratos, and C.S. Zaidins, Nucl. Instr. & Meth. 83, 245 (1970).

