ENTRY	NO.	8
L. 11111	110.	٠.

	0.4-0.4-0	
NAME OF MACHINE TRIUMF		
INSTITUTION Universities of Alberta,	British Columbia, Victoria, and Simon	
ADDRESS UBC, Vancouver, B.C., Car	nada V6T 1W5 Fraser University	
	M. M. Caraldania C. Darken	
IN CHARGE J.I. Sample	REPORTED by M.K. Craddock, G. Dutto	
HISTORY AND STATUS	MAGNET	
DESIGN, date July 1966 MODEL tests Dec. 1966		
ENG. DESIGN, date October 1968	GAP, min 52.8 cm; Field 5.8 kG at 0.72 \times 10^6 max cm; Field 2.0 kG	
CONSTRUCTION, date January 1970	max cm; Field kG \ ampere turns	
FIRST BEAM date (or goal) <u>December 1974</u>	AVERAGE FIELD at R ext 4.6 kg ampere turns	
MAJOR ALTERATIONS	CURRENT STABILITY ±5 parts/10°; B _{max} /(B) 1.25	
	NUMBER OF SECTORS 6 ; SPIRAL, max 70 deg	
OPERATION, 144 hr/wk; On Target 100 hr/wk		
TIME DIST., in house%, outside%	Harmonic correction 13/sec	
USERS' SCHEDULING CYCLE <u>∿12</u> weeks		
COST, ACCELERATOR Can\$12,000,000	WEIGHT: Fe 4000 tons; Coils 170 tons	
COST, FACILITY, total Can\$36,000,000	CONDUCTOR, Material and type Al	
FUNDED BY Atomic Energy Control Board		
and TRIUMF universities	COOLING SYSTEM water	
ACCELERATOR STAFF, OPERATION and DEVELOPMENT	POWER: Main coils 1270 normal, 3160 max, kW	
SCIENTISTS 13 ENGINEERS 15	Trimming coils 68 max, kW YOKE/POLE AREA 18 %	
TECHNICIANS 70 CRAFTS 50	SECTOR ANGLE (Sep Sec) - deg	
GRAD STUDENTS involved during year 0	SECTOR ANGLE (Sep Sec) deg ION ENERGY (Bending limit) E/A =q ² /A ² MeV	
OPERATED BY Res staff or X Operators	(Focusing limit) E/A =q/A MeV	
BUDGET, op & devCan\$8,700,000	- 4/A MeV	
FUNDED BY <u>National Research Council</u>	ACCELERATION SYSTEM	
	DEES, number 2 angle 180 deg	
RESEARCH STAFF, not included above	BEAM APERTURE 8 cm; DC BIAS 0 kV	
USERS, in house 70* outside 60	TUNED by coarse name is fine name is	
GRAD STUDENTS involved during year 25*	TUNED by, coarse <u>panels</u> fine <u>panels</u> $RF $	
RES. BUDGET, in house Can\$1,800,000 FUNDED BY National Research Council	Orb F to 4.61 mHz; GAIN, max340kV/turn	
FUNDED BY National Research Council		
	DEE-Gnd, max 85 kV, min gap 2.5 cm	
FACILITIES FOR RESEARCH	STABILITY, (pk-pk noise)/(pk RF volt)	
SHIELDED AREA, fixed 2350 m ²	RF PHASE stable to ± 0.5 deg	
movable (incl shielding within area) m ²	RF POWER input, max 1050 kW	
TARGET STATIONS 10 in 2 rooms	RF PROTECT circuit, speed µsec	
STATIONS served at same time, max 9	Type Screen Input. In emergency, Crowna	
MAG SPECTROGRAPH, type MRS spectrometer	FREQUENCY MODULATION, rate/sec	
COMPUTER, model	MODULATOR, type	
OTHER FACILITIES	BEAM PULSE, width	
Polarized fast neutron beam	VACUUM SYSTEM	
Thermal neutron source	1 0111 0, 140., 1 4 90, 0120	
Biomedical irradiation	2 He-cooled 20 K cryopanels, 1.2 m ²	
	OPERATING PRESSURE 0.06 μTorr,	
REFERENCES/NOTES	PUMPDOWN TIME 24 hrs	
	TOWN DOWN TIME	
	ION SOURCES/INJECTION SYSTEM	
	1. "Ehlers" Hot Filament Arc (H ⁻)	
	2. "Lamb Shift" Polarized H	
	EXTRACTION SYSTEM Electron stripping in Al or C foil	
*includes users from the four founding	CONTROL SYSTEM	
universities	3 minicomputers with CAMAC	

Secondary

polarized n

CHARACTERISTIC BEAMS BEAM PROPERTIES Conditions Measured Goal Achieved 45 RF deg 100 μA of 500 MeV <u>p</u> **Particle** (MeV) (MeV) Pulse Width Phase Exc, max 20 RF deg 100 μA of 500 MeV _____ 165-500 1<u>80-520</u> **ENERGY p**_ 100 μA of <u>500</u> MeV _ Extract Eff 99.95% 65-100 р 100 μA of 500 MeV Res, $\Delta E/E$ 0.3 % Emittance CURRENT 100 (500MeV) 100 μA of 500 MeV Internal 15<u>0 (450</u>MeV) **OPERATING PROGRAMS, time dist** 100 (500MeV) 90 % Simultaneous External Basic Nuclear Physics 40<u>0 (450</u>MeV) at various Solid State Physics target **Bio-Medical Applications** % stations MeV Isotope Production 10 % (part/s) Development _

PLAN VIEW OF FACILITY, NOTEWORTHY FEATURES, OPERATION SUMMARY, ADDITIONAL REFERENCES

20-120

20-75

75% @ 200 40% @ 500

Fig. 1 Layout of the facility. Existing beam lines are indicated by solid lines, beam lines planned for future installation by dashed lines (see text).

%

.%

REFERENCES

- J.J. Burgerjon, O.K. Fredriksson, A.J. Otter, W.A. Grundman, B.C. Stonehill, Construction details of the TRIUMF H⁻ cyclotron, IEEE Trans. $\frac{NS-20}{3}$, 243 (1973).
- J.B. Warren, TRIUMF, March 1971, IEEE Trans. NS-18(3), 272 (1971).
- J.R. Richardson, The Status of TRIUMF, Proc. 7th Int. Conf. on Cyclotrons and their Applications (Birkhäuser, Basel, 1975), p. 41.
- G. Dutto, J.L. Beveridge, E.W. Blackmore, M.K. Craddock, K.L. Erdman, D.P. Gurd, C.J. Kost, G.H. Mackenzie, P.A. Reeve, J.R. Richardson, J.T. Sample,
- P. Schmor, M. Zach, Developments at TRIUMF, IEEE Trans. NS-24(3), 1653 (1977).