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Abstract 
High intensity primary ion beams at GANIL are necessary 
to induce high radioactive production rates in the frame of 
the SPIRAL project. In this paper, we show that an 
intense beam can be tuned at injection in a cyclotron so as 
to result in a spatially spherical beam in the machine, with 
a reduced halo formation. 

1 INTRODUCTION 
The question on high intensity beams in cyclotrons is of 
great interest (Stammbach [1]).Various new applications 
require a fine beam tuning  and a good comprehension of 
the space charge effects in order to limit the halo 
formation, and to avoid beam losses and activation in the 
machine. First, we establish the exact matched solution in 
the academic case where the electric space charge force is 
linear. Then we present a self-consistent approach 
allowing us to take into account the non-linear effects. 
Finally, we present simulation results obtained in the case 
of our compact injector C01. 

2  LINEAR ANALYSIS 
We consider a reference particle (q,m) rotating without 
acceleration on a circle according to the equations : 
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   The mid plane is represented by (x,y), and the magnetic 
field is reduced to a negative component bz , so that the 
central particle turns counter clock : 
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  Around the central particle, a bunch of particles creates a 
repulsive electric field, which is supposed linear. Being 
interested in what happens in (x,y), we admit that there 
exists vertical focusing forces compensating the vertical 
repulsion. Moreover, we consider the mass m=m0γ of 
each particle to be constant, although its energy will vary 
due to the space charge effects. The coupled equations 
can then be written : 
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This gives in the complex plane, using  z = x + iy  : 
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The solution is stable for r1,r2 purely imaginary, which 
leads to the following condition on the intensity : 
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We can use now the matrix form : 
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The Lorentz variables are not conjugate, so that TL is not 
a symplectic matrix. Introducing the vector potential A 
and the generalised impulsion P , we find : 
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The co-ordinates (x,Px;y,Py) being conjugate, the transfer 
matrix T is now symplectic and satisfies the relations : 
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Although T is time dependent, we search an initial 
condition which remains constant in time : 
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The solution is a diagonal matrix σ0 with : 
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Using now the co-ordinates (∆r,∆s,∆pr/p0,∆p/p0, we obtain 
a beam matrix 0σ̂  which is also constant in time : 
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  This beam matrix represents the stationnary “round 
beam” : the disk radius is ∆r=∆s, the radial divergence 
and the momentum spread must be equal , the specific 
correlations  (∆s-∆pr/p0) and (∆r-∆p/p0) must also be 
equal, all this depending on the intensity ratio given by 
the parameter u. The non correlated longitudinal and 
radial  emittances are equal and vanish for u=1 : 
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  In the limit case u=1, the projections (∆s-∆pr/p0) and 
(∆r-∆p/p0) become segments : the bunch is  “laminar” and 
even behaves like a rigid body : for one position (∆r, ∆s), 
there is only one possible (∆pr/p0,∆p/p0), the bunch 
rotating around the central particle with the period 4π/ω.  
  The emittance equation can be written in another way : 
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   For given emittances and intensity, the ideal “round 
beam” radius is deduced from this 4th order polynomial. 
This is similar to the Kapchinsky-Vladimirsky-Lapostolle 
result, except that ∆φ is not considered to be constant, 
which explains the term in ∆r instead of ∆r2 in the 
equation. If we consider an adiabatic acceleration of the 
round beam, the disk radius remains constant. This 
produces a linear decrease of the phase length. 
  Knowing that the only external force is the radial 
focusing, and that the space charge force is repulsive, it 
may be surprising that the longitudinal length does not 
increase. In fact, due to the initial conditions and the slow 
vortex motion, all the particles profit from the radial 
focusing “from time to time”. For intermediate values of 
the parameter u, each particle trajectory is composed of a 
rotation around a centre rotating itself around the central 
particle, which gives a rosette-like figure. 

3  SELF-CONSISTENT APPROACH 
In order to study the non-linear space charge effects, we 
have built a program called LIONS_SP, merging our code 
LIONS [2], used for the study of the CIME cyclotron, 
with our code CHA3D [3], which is a 3D Poisson solver 
using the conjugate gradient algorithm.  
 
3.1 Characteristics of the calculations 
 
LIONS_SP uses the classical Particle In Cells method. It 
is optimised in Fortran 90 to work either on vectorial or 
parallel computers, using optionally the HPF extensions. 
  In order to obtain a good precision, the number of macro 
particles is chosen about 600000. The Poisson computer 
box, which follows the central particle, is a 30 mm cube, 
with a mesh containing about 3.4 millions points. With 
such parameters, we use about 1.2 Gigabytes of central 
memory, and the CPU time is typically 3 minutes per turn 
in the cyclotron, on a FUJITSU VPP5000. 



 

 

3.2 Influence of the density distribution. 
 
The previous analysis allows us to build an initial “round 
beam” for a given couple emittance-intensity. However, in 
the linear case, the charge density is supposed to be 
constant inside the bunch and zero outside. In the code, 
we distribute in a uniform way the N particles in the 6D 
phase space. In the 3D real space, this gives a sphere of 
radius ∆r with a more realistic distribution : 
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  The spherical Poisson equation can also be solved 
analytically, and with given radius ∆r and intensity, it 
generates a slope E(δr)/(δr) at δr=0 which is 32/3/π times 
greater than the  corresponding  slope in the linear case. 
Launching such an initial bunch with LIONS_SP, we 
observe an increasing disk radius, followed by its 
pulsation around the initial ∆r. Moreover, if we chose N 
in order to obtain the linear slope, the disk radius begins 
to decrease, and pulses. In fact there is an intermediate 
value ∆r which avoids the radius pulsation. With such an 
adjustment, and using all the conditions given by the 
linear analysis, the bunch remains a stationary round beam 
without any halo formation. If we accelerate the beam, its 
radius remains constant, and the phase length decreases. 
 
3.3 Various initial conditions 
 
We have studied the beam behaviour for various 
unmatched initial conditions : 
 - If the longitudinal length is chosen longer than ∆r, it 
appears a spiral galaxy shape, with two tails.  
 - If the bunch is round, but with an energy spread smaller 
than in the linear theory, a spiral galaxy shape appears 
also, but with two tails oriented in the opposite direction. 
 -  If we don’t apply the required (∆s-∆pr/p0) and (∆r-
∆p/p0) correlations, the mixing of a disk deformation and 
a halo formation appears. 
  All these tests prove that the linear analysis provides a 
good initial beam matching which minimises the halo. 
   Moreover, the matching conditions without any space 
charge (u=0) give an excellent way to tune a round beam, 
with a phase length decreasing in the machine. 
 

4  APPLICATION TO CYCLOTRON C01 
 
The cyclotron C01 is one of the two injectors used at 
GANIL to accelerate stable beams in cascade with CSS1 
and CSS2. In the frame of the THI project [4], it is 
presently “revisited”. For this purpose, we have 

recalculated the magnetic field using TOSCA, and the RF 
3D field using CHA3D. 
  The C01 has 2 characteristics which complicate the 
tuning : there are 3 spiral shape poles, which gives no 
field symmetry. It is a compact cyclotron with an axial 
injection, so that it is not easy to find the ideal injection 
matching in backward, due to the transit time in the first 
gaps. However, to tune the beam in the presence of space 
charge effects, we proceed the following way : first, we 
construct an initial condition one turn before the 
extraction, using the “round beam” linear conditions and 
the best (∆r-∆pr/p0) and (∆z-∆pz/p0) correlations inherent 
to the machine. Then we go backward using the “linear 
option” of the code, down to the injection point, where we 
filter the particles which are inside the theoretical round 
beam momentum spread. We deduce all the correlations 
of this sub-bunch and start forward with a new set of 
particles. Then, using the PIC method, we can check the 
“round beam” behaviour in the machine. The whole 
process provides the relevant injection correlations which 
must be created by the low energy transfer line, in order to 
create the round beam in the C01. 
  There is however one drawback making difficult a real 
“round beam experiment” in the C01 :  the required 
momentum spread at injection is greater than what can 
give our buncher. A rebuncher installed about 1 meter 
before the injection could be the solution to obtain all 
together the desired phase length and the mometum 
spread, and increase significantly the intensity. Although 
the actual intensity obtained in the C01 is sufficient to 
achieve the 6 Kilowatts required in the THI project, its 
increase could allow us to cut in emittance between  C01 
and  CSS1, and make easier the tuning in CSS2. 

5  CONCLUSION 
The linear “round beam” approach allows us to find out 
the exact matching which must be satisfied as an initial 
condition, for given emittances and intensity. The radial 
and longitudinal emittances must be equal, and the 
correlations (∆s-∆pr/p0) and (∆r-∆p/p0) must be set 
according to the ratio I/Imax. Moreover, the non-linear PIC 
method confirms the linear analysis. 
  The power of the actual computers allows us to solve the 
Poisson equation with great precision, provided that the 
algorithm is implemented in a parallel language. 
   Finally, the linear “round beam” approach provides a 
good way to design a high intensity cyclotron, or a 
cascade of cyclotrons, with their associated beam lines 
and bunchers.  
  It gives also an interesting way to tune a cyclotron even 
in the absence of space charge effects. 
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