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Abstract 

 
The recently proposed beam physics method was 

introduced briefly. The intense beam transverse density 
distribution is investigated and estimated with the 
quantum beam physical theory by solving the quantum 
beam dynamic equation of the proton intense beam in free 
space, It is shown that the estimating results basically 
agree with the experimental fact, and that the quantum 
beam dynamics is a new useful method for studying 
accelerator beam transmission. 
 

1  INTRODUCTION 
 
In the past 50 years, the classical beam dynamic 

physics achieved great success in designing and 
constructing accelerator, and itself became a mature and 
perfect theory in its own right. But the physics 
development is unending, and no any branch of the 
physics need not to develop. The accelerator beam 
physics is also. 
  For deep going research of the beam transfer 
characteristics, in recent years, R. Fedele et al. proposed a 
quantum-like beam physics theory, namely, the 
thermal-wave model for relativistic charged particle 
beam propagation1-4 to describe the optics and the 
dynamics of charged particle beams. R. Jangannathan et 
al. presented a quantum beam theory based on the Dirac 
equation5-7 to study the behavior of electron optics system. 
Recently a quantum beam physics method has been 
proposed8, 9. All of the above beam dynamics theories are 
for easily solving and explaining a lot of beam 
phenomena that can not be solved by the classical 
methods, and the rapidly increasing number of beam 
phenomena that involve quantum effects, for example, the 
beams strahlung in the e+e- linear collider at energies 
beyond a TeV, etc.10, 11 
  On the other hand, we find when a proton beam with 
K-V distribution (energy E=15KeV and current intensity 
I=52mA) transferred from an aperture (radius R is 0.5cm) 
to a baffle with a hole in its center, a beam density 
annular distribution as a diffraction ring forms on the 
baffle (see fig. 1). It is clear that the beam density is not 
K-V distribution. Because the de Broglie wavelength

dλ is 

much less than the beam aperture radius R0, the particle 
diffraction is impossible to happen according to the 
quantum mechanics principle, and the classic beam 
dynamics also cannot explain this phenomenon. Here we 
try to explain this phenomenon and to estimate the beam 

distribution rationally by using the recently proposed 
beam physics method. 

 
Figure 1: the photograph of beam baffle 

 
2  A BRIEF PRESENTION OF THE 

QUANTUM BEAM DYNAMICS METHOD 
 

For describing the behaviors of different current 
intensity beams, we introduced two different forms of 
quantum beam dynamics master equation 

),,(}2)(
22

1

)(
22

1
{),,(ˆ

2

2

zyxqAmqVqA
y

ia
mqV

qA
x

ia
mqV

zyxK

zy

x

φ

φ

−−+
∂
∂+

+
∂
∂=

               

(1) 

and 

),,(])()(

),,(2[),,()ˆ(

22

2

zyxqA
y

iaqA
x

ia

zyxmqVzyxqAK

yx

z

φ

φ

+
∂
∂−+

∂
∂−

=+

                                
 (2) 

Here ),,( zyxφ  is the beam propagation wave function, 

sJca ⋅×== −242 1025.14 hπ , ziaK ∂∂=ˆ , q and m are the 
electric quantity and the mass of beam charged particle, 
respectively. Ax, Ay and Az are the magnetic vector 
potential components of magnetic field, V(x, y, z) is the 
beam gauge electric potential. For the axisymmetric 
electromagnetic field, the master equation (1) becomes to 
the quantum beam dynamics Schrëdinger-like equation  
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The Equation (2) can be written as 
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  The normalized beam propagation function ),,( zyxφ  
is in connection with the charged particle beam density 
distribution at space site (x, y, z). Let us denote by 

),,( zyxσ  and N the transverse density number of beam 

and the total number of particles at beam longitudinal 
position z, respectively, so the meaning of ),,( zyxφ  is 
given by the following relationship: 

2
),,(),,( zyxNzyx φσ ⋅=                   (6) 

Here the normalizing condition of ),,( zyxφ is  

∫ ∫ =⋅
+∞

∞−
1),,(),,(* dxdyzyxzyx φφ            (7) 

  Furthermore, the beam radius R(z) is defined as the half 
width of the beam transverse density, which is the 
Gaussian distribution: 

    86.0),,(
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The particle track slope operators yx ′′ ˆ ,ˆ are defined as 

zyzx PPyPPx ˆˆ        ,ˆˆ =′=′                    (9) 

  In addition, we can demonstrate that Liouville theorem 
is tenable in quantum beam physics according to the 
physics annotation of ),,( zyxφ . 

 
3  THE SOLUTION OF QUANTUM 

BEAM DYNAMICA EQUATION 
 
  Suppose that the intense beam is K-V distribution at 
the position of exit, the charged particle gauge electric 
potential ),,( zyxV  can be written as 
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Where qmV 2v2
00 =  is the gauge electric potential at 

axis z, 
0ε is permittivity of free space; v is the velocity of 

beam particle, R is the beam radius. 
  Substituting equation (10) and equation (11) into 
equation (5), we find 
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For the particle beam moving in the free-drifting space, 
K̂  is a conserved quantity. This means that  

),,(),,(ˆ 22 zyxPzyxK z φφ =                    (13) 

and the beam propagation function can be expressed as 
)(),(),,( zZyxzyx ϕφ = , the equation (12) becomes 
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The solution of equation (14) is 

Bz
a

P
AzZ z ++= )sin()( θ                     (16) 

Here A, B and θ are decided by the initial beam condition. 
If we define 

4
2

0
2 2

1
C

vR

mqI

a
=

πε
， λ=− )2(

1 2
022 zPmqV

Ca
  

X=Cx，       Y=Cy                     (17) 
then the equation (15) becomes 
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This is a self-conjugate equation, which has the 
convergence solution under the condition ±∞→x  and 

±∞→y , 0),( →YXϕ . These conditions are enough for 
researching particle beam. The equation (18) with these 
boundary conditions is just the Schrëdinger equation of 
two-dimensional isotropic harmonic oscillator, its 
solution is  

)()(]2)(exp[),( 222
,, CyHCxHyxCNyx nmnmnm +−=ϕ   

                                 (19) 
where π!!2 )(

, nmCN nm
nm

+= is the normalization 

constant with state number m, n=0, 1, 2, 3…, and 
eigenvalue )1(2 ++= nmλ . )(CxH m

 and )(CyH n
 are 

the Hermitian multinomials. Function ),( yxϕ has the 
orthonormality and completeness. The solution of 
equation (12) can be written as 
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4  ESTIMATION TO BEAM 

TRANSVERSE DENSITY 
 
  According to quantum mechanics theory of harmonic 
oscillator, state m and n have the following relationship 
with the transverse position (x, y), 2)1( 2 −= xCm  and 

2)1( 2 −= yCn . Submitting definition of C into last 
relationship, we obtain 
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  For the proton beam with E=15KeV, I=52mA and 
R=0.5cm, its first state number m and n corresponding 
transverse position (x, y) is shown in table 1. 
  According to the definition of beam transverse density, 
we find 
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Table 1. 

State number Transverse position 

m=n=0 x=y≈4.037mm 

m=n=1 x=y≈6.993mm 

m=n=2 x=y≈9.028mm 

m=n=3 x=y≈10.68mm 

 
  We find that the initial beam radius R is located 
between the positions decided by the state m=n=0 and 
state m=n=1. With supposing that the beam particle 
density decreases rapidly with the beam radius increasing 
and submitting equation (19) into equation (22), we can 
obtain the beam particle transverse density distribution, 
which relative density Re ( ),0,0(),,( zzyxRe σσ= ) is 

shown in Fig. 2. 
  Comparing the fig. 1 and fig. 2, we find that the higher 
the state number m and n is, the more closely the 
estimating distribution of beam transverse density would 
agree with the fact. 
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Figure 2: Curves of the beam relative density Re 
distribution with the beam transverse position r 
in different state number m and n. Here 

),0,0(),,( zzyxRe σσ= . 

 
5  DISCUSSION 

 
  It is difficult to compute the beam particle distribution 
in classic beam dynamics. Here we use the recently 
proposed beam physics method to estimate the beam 
transverse particle distribution, and find that the 
estimating results basically agree with the experimental 
fact. Therefore, we can consider that the quantum beam 
dynamics maybe is a new useful method in studying 
accelerator beam transmission. 
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