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Abstract

The effect of the misalignment of quadrupoles on the
closed orbit can be treated as each contribution of the
eigenmode of the eigenvalue problem for the precise
magnet alignment of the synchrotron. As each eigenmode
corresponds to its proper quadrupole displacement mode,
the net misalignment is given by the linear combination
of all eigenvectors. However, an individual mode
contribution to the closed orbit distortion is different. The
COD response to each misalignment mode is analyzed for
the different survey meshes and the relations between the
eigenmode and the misalignment pattern are given.

1 INTRODUCTION
To ensure the least COD (closed orbit distortion) to the

beam operation of the synchrotron, magnets must be
aligned precisely on the designed orbit. Generally the
synchrotron is installed in the tunnel built for just a size
allowing the machine space and the narrow passage for
both the component installation and maintenance along
the synchrotron ring. Therefore, a survey network shall be
confined in the small space where the triangulation works
take place using the overlapped flat triangles. The
surveyed data are analyzed numerically by the least squares
method (LSM) to make the alignment error minimum for
all magnets. Even if the survey is performed to an
accuracy of 0.01 mm, the LSM gives larger positional
error of the magnet than expected.

 After an installation of magnets is made in a few mm
accuracy depending on the ground survey in the accelerator
tunnel, the precise alignment of 0.1 mm accuracy follows
using special tools developed for the accelerator survey or
special purposes such as distinvar, distometer, offset
measuring device and/or the laser tracker of which cat’s
eye reflector is tracked by the light of an incorporated laser
interferometer measuring both the angle and the distance.
By using either tools or the laser tracker, the raw survey
data are obtained and processed mathematically to deduce
the suitable data for the magnet re-alignments.

Several survey meshes are introduced at the different
laboratories depending on the ring structure and the
geometry of the magnet lattice. However, the survey
mesh shall be selected what kind of survey data is useful
to determine the magnet position accurately. This study is
intended to find which mis-alignment mode affects
seriously to the beam orbit. Since the quad mis-alignment
gives the direct deflection to the beam, only the quad mis-
alignment is considered here.

The present-day large synchrotron is composed of the
same magnet lattice except for the experimental
insertions. This kind of synchrotron is classified here as
an asymmetric ring of which shape is different from the
circle, in contrast with the symmetric ring which holds
the circular shape.

2 SURVEY DATA ANALYSIS
If N quads having an individual positioning target point

make a whole ring, at least two survey variables Si  and
Pi  ( , , ..., )i N= 1 2 , short chord and perpendicular,
respectively, are necessary to each quad. These variables
are expressed as a function of the radial and azimuthal
coordinates of target points, Ri  and Θi .

S F Ri i i= ( , )Θ  and P G Ri i i= ( , )Θ , (1)

where the subscript i  of R and Θ is considered for all
quads. For an example, if Si  is a distance between the

adjacent quads, S F R Ri i i i= +( , , )1 Θ . Differentiating the

above relations to the first order,
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where ( si  and pi ) are the deviations from the design
values which are determined from the precise survey and
( ri  and θi ) the quad displacements to the radial and
azimuthal directions, respectively. Applying relations (2)
and (3) to all quads, the following equation is obtained,
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where the 2Nx2N matrix depends on the ring geometry. If
3 variables ( Si , Pi  and Qi ) are considered, the matrix
becomes 3Nx2N and the left column vector has 3N
elements [1]. In any case the matrix equation (4) is
expressed simply as

p r= ( )A (5)

and solved by LSM as
h p r≡ =( ) ( )* *A A A , (6)

where A*  is the transposed matrix of A  and A A*  the
2Nx2N matrix. From this relation the precise magnet
alignment problem can be treated as an eigenvalue
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problem. Replacing the matrix A A*  with H , the
eigenvalue λ i  is given by the following equation,

( )H i i iv v= λ , (7)
where v i  is the eigenvector belonging to the eigenvalue
λ i . The magnet displacements ri  andθi  consist of a
linear combination of the eigenvectors as follows,

r v= ∑ ck
k

k , (8)

where
ck k

T
k= ( ) /v h λ , (9)

and the j-th component of the displacement vector r  is

r vj
k
T

kk
kj= ∑ ( )v h

λ
, (10)

where vkj  is the j-th component of the eigenvector vk  [2].

3 SURVEY MESHES
Three meshes which are treated here are depend on the

survey variables,
(Case#1) short chord and perpendicular,
(Case#2) long chord and perpendicular, and
(Case#3) short chord and 2 perpendiculars,

as shown in Fig.1.
The matrix equations for 3 cases are derived for the ideal

symmetric ring and the asymmetric ring TRISTAN
(converted already to KEK-B factory) assuming that both
rings have the same diameter and the same number of
quads (392 quads). The eigenvectors for the largest and
smallest eigenvalues are shown for the asymmetric and
symmetric 3 cases in Fig.2, where each eigenvector is
plotted to the order of the quad arrangements and a left
(right) half corresponds to the radial (azimuthal)
displacements. There are distinct difference between the
asymmetric and symmetric cases and the characteristic
displacement patterns appear for the modes with large
eigenvalues.

If the lattice symmetry is lost as in the case of a
colliding machine, the radial and azimuthal displacements
can be treated separately for larger eigenvalues but both
displacements are combined each other for smaller ones.
Whereas in the symmetric quad arrangement, the case#1
shows the strong coupling between the radial and
azimuthal displacements for larger eigenvalues.

The mode with the smallest eigenvalue gives one
sinusoidal variations along the synchrotron ring to both
radial and azimuthal directions. If the eigenvalue increases,
the number of oscillations increases.

The relation (8) or (10) means that the contribution of
eigenvectors which are less significant to the beam
motion may be omitted from the solution. In general, the
smaller the eigenvalue the larger it contributes to the
magnet displacement as given by (10) and it is desirable
to neglect the eigenvectors having little contribution to
the beam. Considering the eigenvector elimination for the
modes with small eigenvalues, the significant amount of
the displacement is left uncorrected. This kind of
displacement often appears in the solution as pseudo-

components which have relatively large coefficients of (9)
for smaller eigenvalues.

Figure 1: Survey variables for 3 cases.

Figure 2: Eigenvectors with the largest (numbered as 1)
and smallest (numbered as 781 or 780) eigenvalues for the

asymmetric (left) and symmetric (right) cases.  The left
and right half of the eigenvector in each figure correspond
to the radial and azimuthal displacements, respectively, to
the order of quad arrangements. Case#1: upper, Case#2:

middle, and Case#3: lower.

4 MIS-ALIGNMENT MODE AND COD
The quad mis-alignment effect on COD can be analyzed

for each eigenmode that is converted directly to the mis-
alignment of quads to estimate its effect by the beam
simulation code in the linear motion regime [3]. As
deviations of the perpendicular and short chord or long
chord length are given by the corresponding eigenvector or
mis-alignment mode, the radial and azimuthal positional
errors are calculated. Assuming deviations of survey
variables thus obtained, the corresponding eigenvector is
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regarded as the mis-alignment mode. Each eigenmode can
be treated as a quad displacement mode separately in the
beam simulation. The rms radial displacement error is
adjusted to 0.1 mm for the fair evaluation of the
individual eigenmode. The resultant rms COD is given in
Fig.3-1, -2, -3 for all eigenmodes of every asymmetric
and symmetric cases when the horizontal and vertical
tunes are 37.2 and 39.1, respectively. Eigenmodes to be
omitted from the magnet re-alignment can be selected by
judging which mode has less contribution to COD.

There are some differences in contributions to rms
COD between the survey meshes. As modes with small
eigenvalues has relatively large displacement amplitudes,
it is desirable  to eliminate from the re-alignment
procedure to avoid the unnecessary or not always
necessary corrections. This analysis provides with a
measure which mode can safely be omitted.

Figure 3-1: The rms COD for the 0.1 mm rms radial
eigenmode offset of quads for the asymmetric (top) and

symmetric (bottom) case#1.

Figure 3-2: The rms COD for the 0.1 mm rms radial
eigenmode offset of quads for the asymmetric (top) and

symmetric (bottom) case#2.

The COD response is modified by the change of the
tune (betatron oscillations per revolution) as shown in
Fig.4, where two examples are compared for the
asymmetric case#1. There is a linear relation between the
eigenmode and the number of the mis-alignment periods
of the whole ring as shown in Fig.5 for asymmetric and
symmetric case#1. Two kinds of symbols (circles and
triangles)  correspond to eigenmodes to which the peaked
COD responses are obtained at different horizontal tunes.

Figure 3-3: The rms COD for the 0.1 mm rms radial
eigenmode offset of quads for the asymmetric (top) and

symmetric (bottom) case#3.

Figure 4: The COD response changes by the tune
variation.

Figure 5: Peaks of the COD response shift to the different
eigenmodes by changing the tune.  Two symbols (circles
and triangles) correspond to eigenmodes giving the peak
COD response to two kinds of hor. tunes. For reference,
tunes are shown with crosses for the symmetric case#1.
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