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Abstract
Analytic tools for the study of multibunch cumulative beam
breakup (MBBU) in linear colliders (LCs) including BNS
damping are developed. One approach is to consider cases
for which exponential growth of MBBU is noticeable, al-
though one generally wishes to avoid this regime in LCs
to make operations easier. By developing scaling relations,
one is able to see at once how to suppress it effectively. The
formalism to study MBBU including some interesting sub-
tleties, such as BNS damping and misaligned accelerator
components, is applied to both normal-conducting and su-
perconducting linacs comprising LCs.

1 BEAM-BREAKUP EQUATION
One of the limitations of future LCs is the MBBU of a long
bunch train driven by the transverse wake potential in the
cavities of the linacs, especially when the size of the cav-
ities is small. Other factors, such as cavity misalignments
and focusing quadrupole offsets, will also contribute to the
emittance increase of the beam and can result in beam loss
as well as reduction in collision luminosity. A spread in
the focusing strength of the quadrupoles, or equivalently a
spread in energy, along the bunch train can provide BNS
damping [1] that may keep emittance growth under control.

Consider a relativistic particle beam injected into a linac
of length �. At a distance s = σ� into the linac, the trans-
verse displacement x(σ, ζ) given beam energy γ(σ)E0 with
E0 the rest energy satisfies the differential equation
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where ζ/ωr = t−s/c, with c the velocity of light, is the
time measured after the arrival of the first bunch at posi-
tion σ. Here, ωr is the angular frequency of the normal-
ized transverse wake with quality factor Q and w(ζ) =
Θ(ζ)e−ζ/(2Q) sin ζ, where Θ(ζ) is the unit step function
and the wake amplitude w0 is embedded into the dimen-
sionless coupling coefficient ε. The quadrupoles’ focusing
strength is represented by κ2 and their transverse offset by
xQ, while xA denotes the transverse misalignment of the
cavity structures. The longitudinal beam profile F (ζ) is a
summation of δ-functions for a train of point bunches.

2 PERFECTLY ALIGNED LINACS
Recently, Bohn and Ng [2] have been successful in solving
the MBBU equation analytically with BNS damping incor-
porated. Consider a train of M point bunches each contain-
ing charge q with a separation τ in time. At entry into the
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linac, the bunches all have the same offset x0 and zero di-
vergence. For a perfectly aligned linac and quadrupole sys-
tem (xQ =xA =0), the envelope of the transient displace-
ment of the m-th bunch, ∆xm(σ) = xm(σ)−xms(σ) with
m = 0, · · · , M−1 is derived, where xms is the steady-
state displacement, the result of having the deflecting wake
first seeded with an infinitely long bunch train immediately
preceding the actual bunch train:∣∣∣∣∆xm(σ)
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The auxiliary relations comprising Eq. (2) are:
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in which e is the charge of the electron, νβ denotes the be-
tatron tune, i.e., the number of betatron wavelengths along
the linac, and γ(0)E0/γ(1)E0 are the particle energies at
the linac entrance/exit. The resonant effect of the transverse
wake resides clearly in the denominator of Eq. (2), but the
above solution is valid only far away from resonance. The
total fractional energy spread across the bunch train, fγ , or
twice the total fractional focusing variation, is embedded in
the parameter η.

In the derivation, the betatron tune νβ is assumed to be
much larger than both the perturbation of the wake and the
relative acceleration gradient. This justifies the employ-
ment of the WKB approximation. The method of steep-
est descent has been used to arrive at the asymptotic be-
havior of the displacement envelope, and is valid provided
the energy chirp is small and the bunch number m is suffi-
ciently large. In order for the derivation to go through an-
alytically, it has been assumed that the betatron tune de-
creases with energy as γ(σ)−1/2, an arrangement closely
resembling that of the SLAC proposed NLC. This deploy-
ment allows all the quadrupoles to be identical and their
power driven by one common bus. Also assumed in the last
auxiliary expression, although not necessary, is a linear ac-
celeration profile in the linac.

We now apply the solution to designs of the SLAC NLC
and DESY TESLA. Some parameters are listed in Table 1.
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Table 1: Some parameters of the SLAC NLC and DESY TESLA.

NLC† TESLA
Linac length � (km) 10.0 14.4
No of betatron wavelengths νβ 100 60
Entry/exit energy (GeV) 10/1000 5/250
No of bunches per train M 90 2820
Bunch charge q (nC) −1.0 −1.6
Bunch spacing τ (ns) 2.8 377
Transverse wake:

amplitude w0 (V/pC/m/mm) 1 0.015
frequency ωr/(2π) (GHz) 14.95 1.70
effective quality factor Q ∞ ∼125000

†The above belong to an older model of the SLAC NLC. and are
chosen to illustrate MBBU. The parameters w0 and Q represent a
worst-case wake.

2.1 Amount of Energy Chirp
The transient displacements of the 90 bunches of the NLC
at the linac exit were simulated and shown in Fig. 1 for en-
ergy spreads fγ =1.5 and 3.0%. It is clear that BNS damp-
ing is helping to control the emittance growth. The relative
displacement of the 90-th bunch would be as large as 2.1
when fγ = 0. We also see that with fγ = 3.0% the enve-
lope reaches a maximum at the 48-th bunch and decays al-
gebraically afterward approaching steady state slowly. An
effective BNS damping requires an energy spread sufficient
to have the maximum to reach some bunches before they
leave the linac. We learn by reviewing Eq. (2) that the enve-
lope maximum corresponds to η�1, from which we obtain
the criterion of required chirping as [2, 3]

|fγ | �
E(1, M−1)

πνβ
, (3)

which is plotted in Fig. 2 versus the wake amplitude for var-
ious strength of betatron focusing. For example, for the pa-
rameters in Table I, an energy chirp of |fγ |�2.18% will be
required. However, as will be seen in the next subsection,
this is not the only criterion to control emittance growth.

Figure 1: Analytic envelope of Eq. (2) at the linac exit (solid
curve) of the SLAC NLC plotted against the simulated transverse
bunch displacements, with total energy chirps of 1.5% (top) and
3.0% (bottom).

Figure 2: Critical energy chirp required for BNS damping in the
SLAC NLC versus deflectingwake amplitude, with number of be-
tatron wavelengths νβ = 75, 100, 125, and 150.

2.2 The Quality Factor
Now let us apply the computed displacement envelope to
the DESY TESLA. If the quality factor of the deflecting
wake were infinite, Eq. (3) would require an energy chirp of
|fγ |=9.27%. This chirp is rather large because of the long
bunch train of 2820 bunches. Even with such a large chirp,
Eq. (2) predicts a normalized transient displacement enve-
lope of |∆xm/x0|=296 for the last bunch at the linac exit,
and such emittance growth is totally unacceptable. Fortu-
nately, the transverse long-range wake of the TESLA linac
in Fig. 3 shows considerable amount of damping [4]. How-
ever, the wake does not correspond to a damped resonance
of a single frequency. Assuming a resonant frequency of
1.7 GHz, one obtains a quality factor of Q=22400 by com-
paring the wake envelope at the first and 10-th bunch spac-
ings, Q=69000by comparing the wake envelope at the first
and 100-th bunch spacings, and Q=124000 by comparing
the wake envelope at the first and 265-th bunch spacings
(which is the end of the wake displayed in Fig. 3). In the
discussion below, we set the quality factor as Q=125000.
Numerically, we find that |∆xm/x0| never exceeds 0.012
and damps to less than 0.010 within the first 150 bunches,
where no energy chirp has been applied (see top plot Fig. 10
below). It is important to mention that the theoretical pre-

Figure 3: Plot of transverse long-range wakeof the TESLA linac.
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Figure 4: Plot of normalized transient displacement envelope of
the last bunch at the linac exit of the SLAC NLC versus energy
chirp |fγ| for various quality factors Q of the deflectingwake. The
amount of equivalent energy-chirp-like damping provided by the
finite quality factor is also shown as dashes.

diction of Eq. (2) may not apply to the TESLA linac, where
MBBU is not severe because of the rather small effect from
the transverse wake. Instead of the method of steepest de-
scent, the MBBU equation should be solved by iteration
with the coupling coefficient ε considered as a small quan-
tity.

We can also visualize a finite quality factor Q of the
deflecting wake as acting like an energy chirp. From the
growth exponent of Eq. (2), it is evident that a finite quality
factor will offset a certain amount of growth [3]. Setting
η = 1 in the exponent, we obtain for the last bunch at the
linac exit

|fγ | =
2Mωrτ

π2Q
, (4)

which is the equivalent amount of energy-chirp-like damp-
ing provided by the quality factor. In Fig. 4, we plot the nor-
malized envelope displacement of the last bunch at the exit
of the SLAC NLC linac as a function of the energy chirp
|fγ | for various values of the quality factor. The large dots
are the equivalent energy-chirp-like damping provided by
the quality factor. The dashed curve joining all the large
dots depicts Eq. (4). Notice that the displacement is ap-
proximately independent of the energy chirp until the stated
threshold is exceeded, after which the displacement drops
off relatively fast with increasing |fγ |. As an illustration,
recall that for a wake with an infinite quality factor, |fγ | =
2.18% is required for BNS damping. However, when the
quality factor is lowered to Q = 5000, Fig. 4 indicates
an equivalent energy chirp of 0.96%. Thus, only |fγ | =
2.18-0.96 = 1.22%  will now be required. This is demon-
strated in Fig. 5, where we can see the maxima of the dis-
placement envelopes reside at the last bunch at the linac
exit in both situations. A smaller quality factor not only re-
duces the amount of energy chirp required for BNS damp-
ing; it also helps to reduce the transient transverse displace-
ment along the bunch train from |∆xm/x0| = 0.76 to a
very much smaller value of 0.15. Thus, for the sake of con-
trolling emittance growth and damping MBBU, it is benefi-
cial to have lower quality factors for the deflecting modes.

Figure 5: Plot of normalized transient displacement envelope at
the linac exit of the SLAC NLC when envelope maximum occurs
at the last bunch. Notice that the energy chirp |fγ| is reduced from
2.18% to 1.22% when the quality factor is reduced from Q = ∞
to 5000.

Returning to the TESLA linac, Eq. (4) gives an “effective”
energy chirp of |fγ | = 4600% for the last bunch of the
bunch train and 1.6% for the second bunch (M = 1). This
explains why the transient displacement envelope was so
heavily damped.

3 MISALIGNED LINACS
To arrive at an analytic solution, some assumptions are nec-
essary. Consider the linac to be comprised of girders. On
each girder is an accelerating length comprised of some
number of rf structures and an optical element. Assume
that the structures and quadrupoles are sufficiently well-
aligned on the girders, leaving the girder misalignments as
the dominating offset errors. If there are a large number of
girders in each betatron wavelength, the beam will experi-
ence the same number of kicks due to the girder misalign-
ments. Since the betatron wavelength is the characteristic
dynamic length, the kicks act roughly as white noise on the
beam. With these considerations, the quadrupole misalign-
ment error xQ(σ) and structure misalignment error xA(σ)
in Eq. (1) are the same random variable. In other words,

〈xQ,A(σ1)xQ,A(σ2)〉 =
d2

g

Ng
Σ(σ)δ(σ1 − σ2) , (5)

where Ng is the total number of girders in the linac and dg is
the rms girder misalignment. When the betatron focusing is
strong, the MBBU equation can be solved in the same way
as in Sec. 2. The result can be expressed analytically as

〈∆xe
m(σ)2〉

1
2

∆xm(σ)
≈ dg

x0

2πνβ√
Ng




1√
E(σ, m)

η ≤ 1

√
2
3

η > 1 ,

(6)

where ∆xe
m(σ) is the transient displacement of the m-th

bunch in the bunch train which enters the misaligned linac
without any displacement errors, while ∆xm(σ), given by
Eq. (2), is the transient displacement of the m-th bunch in
the bunch train which enters a perfectly aligned linac with
initial displacement x0 for all the bunches. The result is re-
markable. First, it is simple. Second, it is independent of
the amount of energy chirp fγ either when η ≤ 1 or η > 1.
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Figure 6: Plot of ratio of transient square-root-emittance with
girder misalignments but no beam offsets to that with beam off-
set but no girder misalignments at the linac exit of the SLAC NLC.
The results verify the N

−1/2
g dependencyof the theoretical predic-

tions which are shown here in dashes. The energy chirp is 1.0%.

For η = 0, Eq. (6) reduces to Eq. (5.6) of Ref. [5], which
was derived without any energy chirp. Also the derivation
there was for square roots of the total emittances rather than
the transient displacements.

3.1 Comparison with Simulations
In order to reduce the fluctuations due to betatron oscilla-
tion, we try to compute the transient square-root-emittance

∆εe
m

1
2 instead of the transient displacement ∆xe

m, where
the former is defined as∗

∆εe
m

1
2 =

[
(xe

m)2+(βx′e
m)2

]1
2−

[
(xms)

2+(βx′
ms)

2
]1

2
, (7)

with β being the betatron function at the location along the
linac under consideration and x′e

m the divergence of the par-
ticle bunch. The subscript s denotes steady state. Thus, the

left side of Eq. (6) is replaced by
∣∣〈∆εe

m(σ)
1
2 〉

∣∣/∆εm(σ)
1
2 .

We performed simulations of the SLAC NLC linac and
computed beam quantities at its exit (σ = 1). In order to
reduce the large spreads of the bunch displacements due
to the randomness of the girder misalignments, each situ-
ation was simulated with 20 seeds and the results averaged.
Figure 6 shows the simulated results when girder numbers
Ng =2500, 10000, 40000, and 160000 were used, while the
energy chirp was kept at fγ =1.0%all the time. The plot ac-

tually verifies the N
−1/2
g dependency stated in Eq. (6). The

theoretical predictions are also shown in dashes with the un-
derstanding that η is always less than unity. We see that
Eq. (6) agrees with the simulated results, although it tends
to underestimate the results in general†. Actually, there will
not be Ng =160000 girders in the NLC linac. This number
is created only for the purpose to check the theoretical pre-
diction. With a linac length of �=10 km and νβ =100 beta-

∗The emittance defined here when divided by the betatron function is
the usual unnormalized emittance.

†The agreement of theoretical predictions with simulations would be
as good as in Figs. 11 and 12 of Ref. [5] if we had plotted the simulation
results of all seeds instead of just the averages and also with the vertical
axis in a logarithmic scale.

Figure 7: Plot of ratio of transient square-root-emittance with
girder misalignments but no beam offsets to that with beam offsets
but no girder misalignments at the linac exit of the SLAC NLC
with energy chirp fγ = 0.5, 1.0, 1.5, and 2.0%. The results ap-
pears to be fγ-independent and follow the trend of the theoretical
prediction for η<1 shown here in dashes.

tron wavelengths, Ng =2500 may be a reasonable number,
which will be used in the discussions below.

Next we vary the energy chirp to fγ =0.5%  , 1.0%, 1.5%,
and 2.0%. In all these cases, η<1. We see in Fig. 7 that the
simulation results fall on each other implying that there is
no dependency on fγ . Careful examination reveals that the
ratio of the emittances appears to become larger for larger
energy chirp especially when fγ = 2.0% . This is under-
standable, because the parameter η is closer to unity. The
theoretical prediction is also shown; it appears to underes-
timate the simulation results.

Now let us examine the situation when η>1. At the linac
exit, η turns unity at the 48-th bunch when the energy chirp
|fγ |=3.0%  , at the 18-th bunch when |fγ |=5.0%  , and at the
10-th bunch when |fγ |=7.0% ‡ . Simulations for these val-
ues of energy chirp are shown in Fig. 8. First, these results
appear to be fγ -independent. Second, the ratios of emit-
tances are definitely larger than those in Fig. 7 where η<1.
Third, these results are mostly bunch-number-independent,
unlike those in Fig. 7. These lead us to conclude that the
results follow the theoretical prediction for η>1 .

3.2 Application
We learn from Figs. 7 and 8 that the ratios of the normalized
transient square-root-emittances are, respectively, of the or-
der 5 (η < 1) and 10 (η > 1) for the SLAC NLC linac, im-
plying that the emittance growth from girder misalignments
is much more serious than the growth from beam misalign-
ment at linac entrance. In Fig. 9, we show the simulated
normalized growth of transient square-root-emittance at the
linac exit due to girder misalignment errors but without ini-
tial beam displacement errors. This growth is larger than
the same growth of an initially displaced beam but without
misalignment errors shown in Fig. 1. As a result, a larger
energy chirp will be necessary to damp MBBU and control

‡|fγ |=5  and 7% would be unrealistically too high to survive the dis-
persive regions of the linear collider; |fγ|=3%  is marginal.
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Figure 8: Plot of ratio of transient emittance with girder misalign-
ment errors but no initial displacement errors to that with initial
displacement errors but no misalignment errors at the linac exit of
the SLAC NLC with energy chirp fγ = 3.0, 5.0, and 7.0%. The
results appear to befγ-independentand follow the trend of the the-
oretical prediction for η>1 shown in dashes.

Figure 9: Plot of transient square-root-emittance with girder mis-
alignments but no beam offsets at the linac exit of the SLAC NLC
with energy chirp fγ = 0.0, 3.0, 5.0, and 7.0%. Compared with
Fig. 1, larger energy chirp will be necessary for BNS damping.

emittance growth. We see that although the growth satu-
rates at an energy chirp of fγ <3% ,  the normalized growth
has been 4-fold, and one needs an energy chirp of 5 to 7%
to lower the growth to within 2-fold. On the other hand, for
an initiallydisplaced beam in a perfectly aligned linac, a 3%
energy chirp controls the growth to less than 0.5 as indicated
by Fig. 1.

Let us come back to the TESLA linac. Because of the
small influence of the transverse wake, the displacements
of the bunches possess rather good memory of their ini-
tial offsets when injected into the linac. As a result, in
the absence of an energy chirp, the transient displacements,
∆xm(σ), for all the bunches are more or less in phase dur-
ing their betatron oscillations along the linac. The envelope
of ∆xm(σ) will become rather sensitive to the location of
observation. To avoid ambiguity, the transient square-root-

emittance, ∆εm

1
2 , defined in Eq. (7) must be used. The

top plot of Fig. 10 shows the simulated normalized tran-
sient square-root-emittance for a TESLA beam without en-
ergy chirp at the linac exit, where the linac elements are per-

Figure 10: Simulated normalized transient square-root-

emittances for the first 300 TESLA bunches without energy chirp
at the linac exit. Top plot is for bunches injected all with offset
x0 but no divergence in a perfectly aligned linac. Lower plot
is for no injection offset, but the 2500 linac girders have rms
misalignment dg. Theoretical predictions are shown as dashes.

fectly aligned while the beam is injected with the same off-
set x0 but no divergence for all the bunches. We see that
with an effective quality factor of Q = 125000, the max-
imum normalized transient square-root-emittance is small
and completely acceptable, around ∼0.012 near the begin-
ning of the bunch train and rolling off to ∼ 0.005 near the
300-th bunch. The theoretical prediction [Eq. (2)] is shown
as dashes, and unexpectedly agrees well with simulations
for bunch number m � 150. The lower plot shows the
beam without offset at injection into the linac, but there are
random misalignment errors in the 2500 girders. (Actually,
each TESLA linac has less number of girders.) Although
the normalized transient square-root-emittance becomes al-
most 4 times larger than the top plot, starting with the max-
imum of ∼ 0.045 and rolling off to ∼ 0.012 near the 300-
th bunch, it is still acceptable. The theoretical prediction
is shown as dashes and highly overestimates the simulation
results. The disagreement is not hard to understand. Both
Eqs. (6) and (1) do not apply well to the TESLA situation
where the wake effect and MBBU are small. This predic-
tion here is the product of the expressions in Eqs. (6) and
(1) and therefore accumulates more uncertainty.
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