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Abstract

Nonlinear transport of intense charged particle
beams is analyzed with Lie agebraic methods. The
particle distribution in six-dimensional phase spaces is
of K-V type. The analysis is performed for magnetic
quadrupoles, and it is similar for dipoles, sextupoles and
other optical elements.

1 Introduction

When the particle energy is low and the beam
current is high, the space charge force of the beams
can not be ignored. In this case, accuracy
calculations for the particle trajectories are very
complicated. So, linear approximation is usually
adopted. However, in the beam transport
experiments of intense beams, beam hallo can be
observed obviously, even the hallo beams are cut
off with aperture lilts, on the following beam lines,
beam hallo still appears. That is because of
nonlinear effects of the beam optics elements,
especially for the intense beams. In the intense
accelerators, such as medical proton linear
accelerators, Accelerator Driven System Nuclear
Power and so on, the nonlinear transport of intense
beams should be taken into account, so that high
beam transmission can be obtained.

There are two ways to calculate nonlinear
trangport for the intense beams. numerical methods
(That is solving fields and calculating trajectories) and
analytical methods. The former methods are usually used
for short beam transport systems (say, ion attracting
systems in the front of ion sources). Because of large
memory equerry of numerical calculations, analytical
approach is convenient for the very long beam line
calculations.

Lie algebraic methods™™ provide a good tool to
study nonlinear transport of intense beams. The key
problem is how to express the electric potentias of the
beams. Because different particle phase space
distributions have different potentials, and they will
evolve with the particle motions. So, it is a very difficult
problem to calculate electric potentials of the beams.
However, in the case of K-V didributions, the electric
potentials of the beams can be calculated easily. In this
paper, we present the nonlinear transport of intense
beams in quadrupole magnets anadyzed with Lie
algebraic methods.
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2 Hamiltonian and its expansion'?

In the Cartesian coordinates (x,y,z), the Hamiltonian
of a particle with timet asindependent variableis

Hy = [mge? + c(px — 0A)? +c%(py —aAy ) +

1

cAp: ~aA,)° +12 +ap 1)
where mpisthe particle rest energy, g isthe charge, py, py
and p, is the x, y, and z component of the particle
momentum, A,, A, and A, isthex, y, and z component of
the magnetic vector potential, @isthe electric potential, ¢
is the light velocity. Here, the canonical variables are
N=(X, ¥, Z, Px, Py, P2)-

Introducevarlablept:_Ht(X’ y’ Z, px’ py’ pz; t)’
solve p, from p;, one obtains:

K =-p, = (p +a9)?/c® ~mgc? - (p, ~GA)% -

1

(py _qu)Z]E —0A; (2)

Define new canonical variables = (x, y,t,X’, Y, po) :

X=X y=y, 1=T-2z/p,,

. 0 (©)
X'=px/py, Y'=pyPo: P; =Pt -P7-

where T =ct , Po=C/vy (Vg is the velocity of reference
particle); po is the momentum of reference particle

Pr=pd(PoC); pYis the value of prfor reference particle.

Under the transformation expressed by eq.(3), the new
Hamiltonian is

%)2 -

H= r ? lo(x- ! 2-
—[(p +pT+p0C 1802}/2 (X qA pO)

1

(Y - 9A/ pp)212 = aA,/ Po - (pr + PO/ By @)
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For the magnetic quadrupoles, A = %(yz—xz)ez, and
the eectric potentia excited by the charged particle

beams in the case of K-V distribution is

3T

i (5)
) XVZ

9= (X + 11y Y? + 1, 557%)
where | is the beam current of the beam bundles; Ty is
the beam repetition period; X, Y and Z are the pulsed
beam dimensions; z is the longitudinal position of the
arbitrary particlerelative to what of the reference particle;
My, Hy and p, are the beam shape factors of the bundles,

expressed as

= XYZyT dé
2 30 +E0R + &)Y + N2 +8)
| X
2 (y2 + OO +Oy? +E)ZHP +6)
) XYZy]z dé
Hz 2 2 2 \/ 2 2 2 2
0 (Z7Y T+ V(X + (Y +E)(z7y° + &)
Substitute eg.(5) into eg.(4) , one obtains
H ={[(p; + PP —QUuxx® + 1tyY? + 11,5671 ~
1 2 ot aG , 2. 2
—-X“- + (X + -
2 vyl 2 Y
(pr + P! Bo (7
where
3IT,
S LB 8)
8118,V o PoCXYZ
Expand the Hamiltonian (7) about the
equilibrium orbit, we have
H:ZHn )

n=0
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where

1
BYVS
Hl =0

H0:

aG _

H2 =
2pg

G
Quty Bo)X = (=2 + Quuy | Bo) Y2 +
2pg
1 , 1
E(XZ +y?) - QU B+ —5—

p2
T
2656
Quy -
——5Y Pt
BSV6
_Quy 2 1 3

I'Pr+—=—5 P
v 2655

Q.ux 2
Hz=- X" Pr
BYvs

1 2 2
%(X’ p‘r+y pr)

(I (10)

3 First order approximation

Thelinear map M is expressed as

M, =exp(—: f5 1) (1)
where, :f,: is Lie operator, when acting on another
function, it perform Poisson bracket operation, and

f, =—¢tH, (risthelength of quadrupoles) (12)

Let the subscript “1” expresses the first order terms of the
map, and M, act on the components of the canonical
variable {, one obtains the first order approximation
solutions of the particle trajectories, expressed in matrix
form, they are
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| costky) kisin(kxe) 0 0 0 o |

X X X

| [ -ksintk,n)  costk, ) 0 0 0 0 g

1 1
0 0 cosh(k,¢) ——sinh(k,?) 0 0

e T Ky g mY (13)

Y1 0 0 kysinh(k,¢)  cosh(k, () 0 hOk y

T i T

! 0 0 0 0 cosh(k, /) &2?
[ Pr1 k. Bo Vo | LP-
| 0 0 0 0 k,B5yé sinh(k,¢) cosh(k,?) |
X7 { 2Quy [ .
k, sin(k,¢)(1+ cosh(k,¢)) -
2 2 2 z X Z
where k2 =-9% 4+ 201y, K2 =95 12041 4, (4 + Kk Koy
Po Po 2k, cos(ky ) sinh(k, )] +
k2 = &"; (14) i[kxkzsjn(kxe)(n cosh(k,()) +
Bovo Bo
2 2 :
(2k2 + kz)cos(kxé)snh(kzé)]} (16)

4 Second order approximation

The second order map M3 can be expressed as
Ms=:f3:, where

0. ¢
faz‘J:)hént(Z,Zl)le:‘J; M:H3({,7)dz (15)

Let the map Mj; act on the linear solution (;
=(x X, vy Yy, 1, p,), one obtains the second
order solutions {, (the subscript "2" expresses second
order) of the map. Theresults are listed as the following

_ X
ak2 + K2
2kf sin(k, ¢) cosh(k,¢) + k,k, cos(k, ¢) sinh(k,¢) [+

X {2E”X [— (2k2 + K2)sin(k,£) +
X

kxﬁoyglzkfsn( ky?) = (2k2 + k2)sin(ky ) cosh(k, () +
kyk, cos(ky ) sinh(k,0) ]} +
Xz’ 2Qpy
(45 + KDk, | BSVE
[2K, sin(k,¢)sinh(k, )] +

[k, c0s(ky£)(~1+ cosh(k,£)) +

Ko [ e costie)(~1+ cosh(,0) -
Bo
(22 + kzz)sin(kxé)sinh(kzé)]}+
X7 2Qpy
4k2 +k2 { Ky
k, sin(k?) sinh(k,£)] +

BovB|(2k2 + k2) cos(ky!)(~1+ cosh(k, 1)) +}+
kyk, sin(Ky?) sinh(k, )]} +

[2k, cos(k, ) (1 - cosh(k,£)) +
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Because the paper islimited up to three pages,
the second terms of x,, y, y» 7,, and p,, arenot

listed here.

5 Discussions

It is a very complex procedure to calculate the
nonlinear trangport of intense pulsed beams. Because the
electrical potentia of the beams depends on the beam
dimensions, and the beam dimensions are related to the
electric potential also, we can only solve the problem by
iterations. Usually, we should provide the initiad beam
dimensions, and the first step: calculate the electric
potential, next step: calculate particle tragjectories, go to
the first step... After severa iterations we can obtain
accuracy solutions.
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