

Single-Shot EOSD Measurements at ANKA

Nicole Hiller

A. Borysenko, E. Hertle, V. Judin, B. Kehrer, S. Marsching, A.-S. Müller,

M.J. Nasse, P. Schönfeldt, M. Schuh, N.J. Smale, J. Steinmann, KIT,

B. Steffen, P. Peier, DESY,

V. Schlott, PSI

Institute for Photon Science and Synchrotron Radiation (IPS) / Laboratory for the Applications of Synchrotron Radiation (LAS)

Outline

- Introduction
- Electro-Optical Sampling (EOS)
 - Long-Range Wake-Field Studies
- Electro-Optical Spectral Decoding (EOSD)
 - Single-Shot Bunch Profiles
- Summary & Next Steps

Introduction: Low-α_c-Operation at ANKA

- Generation of coherent synchrotron radiation (CSR)
- Circumference: 110.4 m
- Revolution frequency: 2.715 MHz
- Energy: 0.5 2.5 GeV (0.8 1.6 GeV during low- $α_c$ -mode)
- RMS bunch length:45 ps (for 2.5 GeV),10 ps down to 1-2 ps (for 1.3 GeV)
- Filling pattern:
 single- or multi-bunch
 (min. bunch spacing 2 ns)

Motivation

Longitudinal Position / ps

What we want to measure:

- Ideally: Long. phase space for every bunch and every revolution
- Realistically: THz-signal (bunch by bunch) & longitudinal bunch profile (turn by turn)

Longitudinal Diagnostics at ANKA

Time domain:

- Time-correlated single photon counting → filling pattern
- Fast-THz-detectors + KAPTURE-system → THz-intensity M. Caselle et al.: THPME125 of every bunch for every revolution V. Judin et al.: MOPRO063
- Low-Noise Block (LNB) microwave detector

- J. Schwarzkopf et al.: MOPRO062
- Streak camera → averaged bunch profiles, evolution over consecutive revolutions
- P. Schönfeldt et al.: MOPRO068
- Electro-Optical methods (EOS, EOSD) → long-ranged wake-fields, single-shot bunch profiles

A. Borysenko et al.: THPME123

Frequency domain:

- Martin-Puplett interferometer
- → Spectrum of CSR
- J. Steinmann et al.: THPME124

■ FTIR Michelson interferometer

Electro-Optical Sampling (EOS)

Far field: CSR at beam line At ANKA: A. Plech et al. (PAC'09): TU5RFP026

EO monitor with grating compressor and wave plates

EOS: Long-Range Wake-Fields

Bunch spacing 2 ns

Wake-fields reach long enough to influence following bunch!

Heat load on crystal

- Heat load on crystal due to wakefields
- Estimated heat power 10 W for 31 mA multi-bunch current (CST)

In the ring from Oct 2012 - Jan 2013

Spectral Decoding (single shot) - EOSD

λ/4: compensate intrinsic birefringence of crystal

λ/2: control transmission through crossed polarizer

EOSD: Results

± 1σ error bands from background fluctuation measurements

We see highly significant substructures for high bunch charges!

Resolution:

0.33 ps (granularity)

1.5 ps (point spread function)

EOSD: Single-Shot Bunch Profiles for Different Electron Beam Parameters

418 pC $8.79 \pm 0.63 ps$

422 pC 13.56 ± 1.26 ps

EOSD for Different Beam Currents

EOSD - Streak Camera - Comparison

Karlsruhe Institute of Technology

Summary

- EO setup at ANKA installed & commissioned
 - → Highly sensitive and reliable diagnostics tool
 - → Now a standard measurement tool during low-α_c-operation
- EOS (averaged) → observe long-range wake-fields spanning the distance between bunches
- EOSD (single-shot) → detect bunch-substructures

Next Steps

- Direct correlation of THz signal and bunch profiles on a turn-by-turn basis
- EO-Methods
 - Fast-Readout of Spectrometer (spectra with up to 2.7 MHz rep. rate with GOTTHARD chip)
 - Optimize geometry to minimize wake-fields and allow measurements in multi-bunch operation
 - Increase of the resolution

Thank you for your attention/support!

Transport into ring

First results!

Federal Ministry of Education and Research

PAUL SCHERRER INSTITUT

Nicole.Hiller@kit.edu - Status of Single-Shot EOSD Measurements at ANKA - WEOBB02 5th International Particle Accelerator Conference IPAC'14, June 15-20, Dresden, Germany

Hole in the ring!

Oops...

Alignment before

Measuring

installation