

5th International Particle Accelerator Conference June 15 - 20, 2014 | Dresden, Germany

HOW TO PRODUCE

100 SUPERCONDUCTING MODULES FOR THE EUROPEAN XFEL

IN COLLABORATION AND WITH INDUSTRY

Hans Weise, for the Accelerator Consortium

Courtesy: with many pictures from

D. Noelle / DESY & others

incl. E. Zanon & Research Instruments

The European XFEL Built by Research Institutes from 12 European Nations

Some specifications

- Photon energy 0.3 24 keV
- Pulse duration ~ 10 100 fs
- Pulse energy few mJ
- Superconducting linac. 17.5 GeV
- 10 Hz (27 000 b/s)
- 5 beam lines / 10 instruments
 - Start version with 3 beamlines and 6 instruments
- Several extensions possible:
 - More undulators
 - More instruments
 - •
 - Variable polarization
 - Self-Seeding
 - CW operation

17.5 GeV

XFEL An Accelerator Complex for 17.5 GeV

100 accelerator modules

800 accelerating cavities 1.3 GHz / 23.6 MV/m

25 RF stations 5.2 MW each

Contributors to the XFEL Accelerator

100 accelerator modules

saclay

Production of Accelerator Components

XFEL Accelerator Module with Tailored Waveguide System

XFEL Contributions to the European XFEL Modules

BINP Novosibirsk, Russia	cold vacuum bellows
	coupler vacuum line
CEA Saclay / Irfu, France	 cavity string and module assembly
	 cold beam position monitors
	 magnetic shields, superinsulation blankets
CIEMAT, Spain	 Superconducting magnets
CNRS / LAL Orsay, France	 RF main input coupler incl. RF conditioning
DESY, Germany	 cavities & cryostats
	 contributions to string & module assembly
	 coupler interlock
	 frequency tuner
	 cold vacuum system
	 integration of superconducting magnets /
	current leads
	 cold beam position monitors
INFN Milano, Italy	cavities & cryostats
	 contributions to frequency tuners
Soltan Institute, Poland	 Higher Order Mode coupler & absorber

Production Rate of Key Components

European XFEL requires 8 cavities & couplers to build 1 module per week

monthly average was to increased by approximately

x 30

XFEL Cavity Production (here at Company RI)

all pictures courtesy Research Instruments

XFEL Cavity Production (here at Company E. Zanon)

XFEL 800 XFEL Cavities Travel Through Europe

cavities each

slight variation in final surface treatment

all cavities are tested and partly re-treated / re-tested in collaboration of IFJ / DESY

further assembly takes place at CEA Saclay / Irfu

XFEL Niobium Material Bought and QC-ed by DESY

- All Nb / NbTi material (24,420 single parts!) was procured by DESY.
- Detailed quality inspection was developed and carried out.
- All material available to cavity vendors.

Industrial Cavity Production Relies on DESY & INFN Supervision

- Special CE certified machines were developed and given to industry.
- Since accelerator cavities are delivered without performance guarantee, very detailed specifications are used.
- Many productions steps are supported and partly supervised by DESY & INFN.
- Several QC steps are established. Very detailed documentation.

Cavity Delivery Status as of 6/2014

XFEL Vertical Cavity Testing at DESY

AMTF Test Stand Infrastructure

Cavity Results

- Mechanical production + surface treatment in full + standard operation
- Vertical cavity testing and all work flows at AMTF are well established
- Gradients in average above specification (almost 300 cavities tested)
 - Average usable gradient after delivery (26.8 ± 7.1) MV/m
 - 2/3 of cavities can be used w/o further treatment
 - 1/3 is getting additional treatm. -> usable grad. increased to (29.6 \pm 5.1) MV/m
- Re-treatment gives significant improvement since ~100 additional treatments / tests for initial gradients < 20MV/m give a projected energy gain of approx. 1300 MeV
- Vertical testing incl. re-treatment & re-testing can be finished in time with realistic assumptions based on experience gained so far
- Cavities up to XM14 are available for module assembly at CEA Saclay

XFEL Cavities (Ready for Transport to IRFU)

2-Phase Line (Service Pipe) Needs and Gets Systematic Repair Work

RF Power Couplers

- Ramp-up of RF power coupler production at Thales / RI needed more time than assumed.
- The problem was the copper plating which requires perfect cleanliness of stainless steel surfaces.
- Reproducibility of copper plating remains challenging.
- In general excellent quality control is required to reject bad parts early during production.

XFEL Coupler Fabrication

XFEL Coupler Pairs Installation in the RF Test Stands

RF Power Coupler Delivery Status as of 4/2014

XFEL Cold Magnets

- 80 (of 100) magnets at DESY
- 67 cold tested
- 48 copper plated
- 20 BQU assembled
- 10 BQU's shipped

XFEL Cavity String Assembly at CEA Saclay / Irfu

see also next presentation WEIB04 given by F. Chastel (ALSYOM)

XFEL Accelerator Cavity String Assembly at Irfu (XM4)

XFEL String / Cold Mass Marriage (XM3 & XM4)

RF Power Coupler Assembly Transport Caps / Final Checks / Shipment

Module Assembly – Buffers are Filled

- string and module assembly relies on sufficiently filled buffers for all parts
- at present parts available at CEA for at least the next 4 modules
 - Cavities
 - Couplers
 - BQU
 - Vacuum parts (bellows / gate valves)
 - Cryostats
 - Magnetic shielding
- transportation boxes and parts-in-circulation are an issue; quick return is a must

XFEL Accelerator Module Assembly Chart

XFEL Module Transport (XM1 arriving at DESY)

XFEL XM-2, XM-1, XM1, XM2, XM3 and XM4 at AMTF

XFEL Accelerator Module Testing at DESY

- first results: XM-2, XM-1 and XM1 are all above XFEL specs. of 23.6 MV/m
- some non-conformities exist but lead to final improvements of series production; feedback to CEA / Irfu

SRF Experience

- Major key-player already working together in the TESLA linear collider R&D phase joined the European XFEL in an early phase.
- DESY has the role as <u>coordinator</u> of the accelerator complex including the superconducting linac. <u>At the same time large in-kind contributions</u> in the field of SRF technology are coming from DESY.
- Work packages contributing to the cold linac are in all cases co-led by a DESY expert and a team leader from the institutes contributing. Integration into the linac installation and infrastructure is a DESY task.
- The European XFEL clearly profits from the <u>long-time experience</u> of DESY in SRF technology, and from the history in building and operating large scale accelerator facilities.

Industrial Contracts

- Large series production in industry requires <u>pre-qualification</u>.
- While in some cases vendors were qualified already during the TESLA R&D phase, in some other areas a careful multistep qualification was done.
- There was a strong effort to always have <u>at least two qualified vendors</u>, and where possible the overall production was split accordingly.
- After contract award a continuous <u>close cooperation with vendors</u> is needed. Many of the used components remain challenging, and non-conformities can be reduced only in fruitful discussions. SRF technology does not allow real compromises, i.e. problems have to be smoothened out in a common effort.

In-kind Contributions

- The European XFEL is built based on <u>in-kind contributions</u>. The project includes <u>technology transfer between the different institutes and also industry</u>. In such a model the <u>coordination effort should not be underestimated</u>. The original budget estimate needs to take care of this.
- Difficult to handle are also the <u>duties defined by dependencies</u>, e.g. in the supply chain. In a technically ambitious project the responsibilities in terms of work sharing may be clear but in case of sudden and unexpected technical problems the <u>collaborative spirit is needed and of utmost importance</u>. Discussion of legal constraints is often of no avail, even if necessary.
- Coordination and integration of in-kind contributions requires not only additional resources but also relies on the <u>possibilities of a strong laboratory</u>. Expecting turn-key systems is an incorrect approach. Both partner, the receiving party but also the in-kind contributor need expertise and excellent communication skills. A well-developed team spirit is of large benefit.

■ The superconducting linac of the European XFEL can only be built due to the great collaborative effort accompanied by an <u>immense team spirit</u> of the involved partners.

Thank you!!!

