A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   R   S   T   U   V   W   X   Y   Z  

Yuri, Y.

Paper Title Page
TH1IOPK02 Modeling of Ultra-cold and Crystalline Ion Beams 151
 
  • H. Okamoto, H. Sugimoto
    HU/AdSM, Higashi-Hiroshima
  • M. Ikegami
    JAEA/Kansai, Kyoto
  • J. Wei
    TUB, Beijing
  • Y. Yuri
    JAEA/TARRI, Gunma-ken
 
 

An ultimate goal in accelerator physics is to produce a "zero-emittance" beam, which is equivalent to making the beam temperature the absolute zero in the center-of-mass frame. At this limit, if somehow reached, the beam is Coulomb crystallized. Schiffer and co-workers first applied the molecular dynamics (MD) technique to study the fundamental features of various Coulomb crystals. Their pioneering work was later generalized by Wei et al. who explicitly incorporated discrete alternating-gradient lattice structures into MD simulations. This talk summarizes recent numerical efforts made to clarify the dynamic behavior of ultra-cold and crystalline ion beams. The MD modeling of beam crystallization in a storage ring is outlined, including how one can approach the ultra-low emittance limit. Several possible methods are described of cooling an ion beam three-dimensionally with radiation pressure (the Doppler laser cooling).

 

slides icon

Slides

 
THPSC061 Molecular Dynamics Simulation of Crystalline Beams Extracted from a Storage Ring 374
 
  • Y. Yuri
    JAEA/TARRI, Gunma-ken
 
 

It is well-known that a charged-particle beam is Coulomb crystallized in the low-temperature limit. The feasibility of beam crystallization has been raised by the recent progress in beam cooling techniques and in understanding of the behavior of crystalline beams. To go a step further, we explore the dynamic behaviors of crystalline ion beams extracted from a storage ring, employing the molecular dynamics simulation technique. The effect of an extraction device and the following transport line on various crystalline beams has been investigated for extraction and transport of crystalline beams without collapse of the ordered structure.