A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   R   S   T   U   V   W   X   Y   Z  

White, D.A.

Paper Title Page
TH1IODN04 Discretizing Transient Curent Densities in the Maxwell Equations 212
 
  • D.A. White, M.L. Stowell
    LLNL, Livermore, California
 
 

The Finite Difference Time Domain (FDTD) method and the related Time Domain Finite Element Method (TDFEM) are routinely used for simulation of RF and microwave structures. In traditional FDTD and TDFEM algorithms the electric field E is associated with the mesh edges, and the magnetic flux density B is associated with mesh faces. It can be shown that when using this traditional discretization , projection of an arbitrary current density J(x,t) onto the computational mesh can be problematic. We developed and tested a new discretization that uses electric flux density D and magnetic field H as the fundamental quantities, with the D-field on mesh faces and the H-field on mesh edges. The electric current density J is associated with mesh faces, and charge is associated with mesh elements. When combined with the Particle In Cell (PIC) approach of representing J(x,t) by discrete macroparticles that transport through the mesh, the resulting algorithm conserves charge in the discrete sense, exactly, independent of the mesh resolution h. This new algorithm has been applied to unstructured mesh simulations of charged particle transport in laser target chambers with great success.