| Paper | Title | Page |
|---|---|---|
| MO4IODN02 | Applying an hp-Adaptive Discontinuous Galerkin Scheme to Beam Dynamics Simulations | 30 |
|
||
The problem of self-consistent simulations of short relativistic particle bunches in long accelerator structures exhibits a pronounced multi-scale character. The adequate resolution of the THz space charge fields excited by short ultra-relativistic bunches requires mesh spacings in the micrometer range. On the other hand, the discretization of complete accelerator sections using such fine meshes results in a vast number of degrees of freedom. Due to the spatial concentration of the particles and the excited space charge fields, the application of time-adaptive mesh refinement is an emerging idea. We reported on the implementation of time-adaptive mesh refinement for the Finite Integration Technique (FIT)*. Based on this work, we implemented an hp-adaptive discontinuous Galerkin (DG) code. The twofold refinement mechanisms of the hp-adaptive DG method offer maximum modeling freedom. We present details of the h- and p-adaptations for the DG method on Cartesian grids. Special emphasis is put on the stability and efficiency of the adaptation techniques. |
||
|