Randomization for Application of TESLA-like Cavity to KEK-ERL

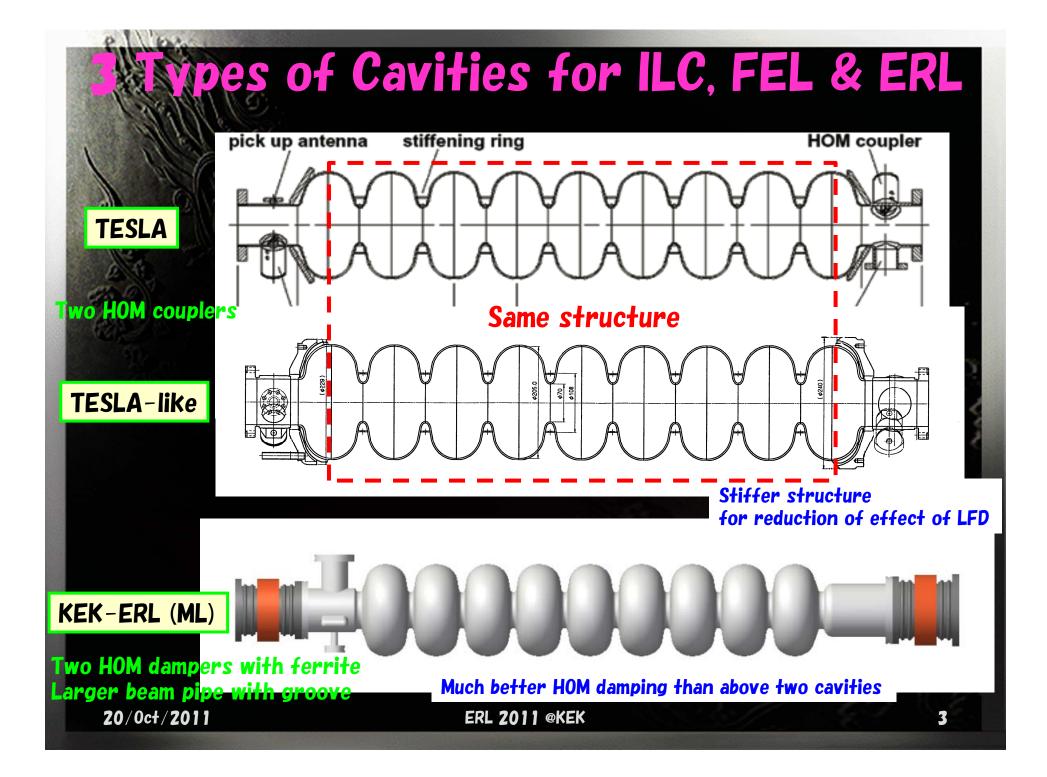
Outline

- > Motivation
- > Cavity Comparison
- **BBU Simulation code**
- > HOM Randomization
- » Result
- > Summary

This work was completed by Hajima-san's cooperation.

Motivation

Application of STF Baseline (TESLA-like) Cavity to KEK-ERL as ILC-ERL Collaboration in KEK



Merit

Cost saving Manpower limitation

Demerit

Lower beam current HOM coupler heating for CW Unexpected matter

BBU simulation codes

BBU simulation codes in the world

Nuclear Instruments and Methods in Physics Research A 557 (2006) 176-188

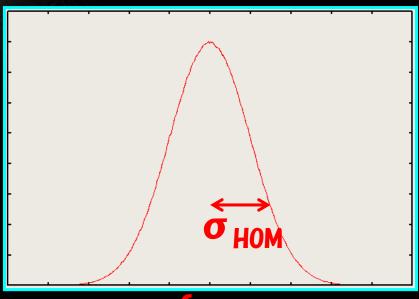
- BBU-R (JAERI)
 - TDBBU (J-lab)
 - New Code (J-Lab)

	BBU-R	TDBBU	New Code	bi	MATBBU
Developer	JAERI	J-Lab	J-Lab	Cornell	J-Lab
Solve	Tracking	Tracking	Tracking	Tracking	Eigenvalue
Dimension	1 D	2 D	1D/2D	2 D	1 D
Programming language	C	Fortran/C	C ++	C ++	Fortran/C

- bi (Cornell Univ.)
 - Used for this work
- MATBBU (J-Lab)

bi (Beam Instability Code)

- Developed by Dr. Ivan Bazarov at Cornell Univ. http://www.lepp.cornell.edu/~ib38/bbu/
- How to use
 - Parameter file
 - beam energy, beam current...
 - Lattice file (Optics)
 - 6x6 transfer matrix
 - HOM data file (changed at this work)
 - \blacksquare R/Q, Q, f, polarization (0° or 90°)


After fixing these parameters, we can run "bi". And, we can find out the beam threshold current (bth) for BBU.

For KEK-ERL cavity, Hajima-san at JAEA already calculated BBU threshold current.

What's HOM Randomization?

t is possible to increase the beam threshold current applying HOM randomization.

Each HOM (f_{HOM}) is distributed by Gaussian (assumption). The error (σ_{HOM}) may be caused by fabrication process.

In BBU calculation, HOM frequency is changed slightly following Gaussian with σ_{HOM} .

The statistics of iteration is 10 for Gaussian with each σ_{HOM} .

fHOM

Changing HOM parameters from KEK-ERL to TESLA-like

courtesy of Umemori-san

$ m f_{HOM} \ [GHz]$	R/Q [Ω]	Q
4.011	4.542	$1.141x10^4$
1.856	48.32	$1.698 x 10^3$
2.428	26.26	$1.689 x 10^3$
4.330	0.02186	$6.068 \mathrm{x} 10^5$
3.002	0.8210	$2.999x10^4$
1.835	54.68	$1.101 x 10^3$

TE-iris mode

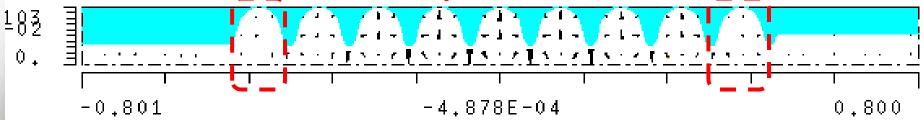
f _{HOM} [GHz]	R/Q [Ω]	Q
1.719	42.00	$4.370 x 10^3$
1.878	25.40	$1.050 \mathrm{x} 10^5$
1.604	0.448	$3.840 \mathrm{x} 10^5$
1.688	10.98	$1.450 \text{x} 10^4$
1.887	7.880	$2.150 x 10^5$
1.895	0.400	$4.720 \mathrm{x} 10^5$

w/ TE-iris mode for TESLA cavity

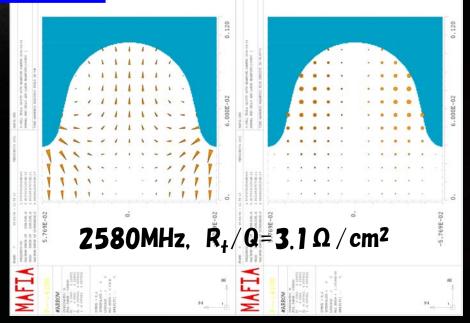
Two HOM dampers with ferrite Larger beam pipe with groove

Two HOM couplers

20/0ct/2011


ERL 2011 @KEK

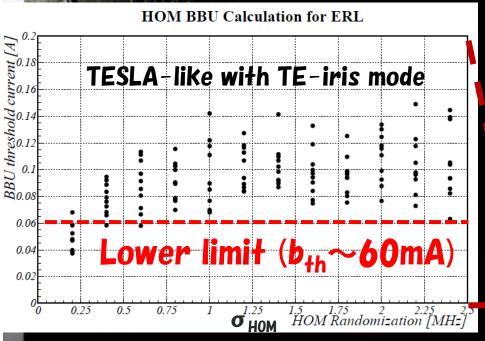
7

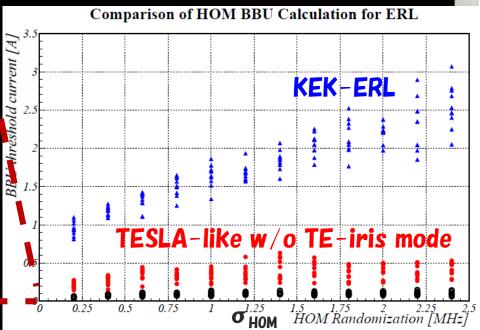

TE-iris mode (most dangerous mode)

9-cell

Cell shape of TESLA

1-cell


This mode is not calculated for TESLA-like cavity.


But, this is more problematic for TESLA-like cavity than TESLA, because of symmetric shape of end cells.

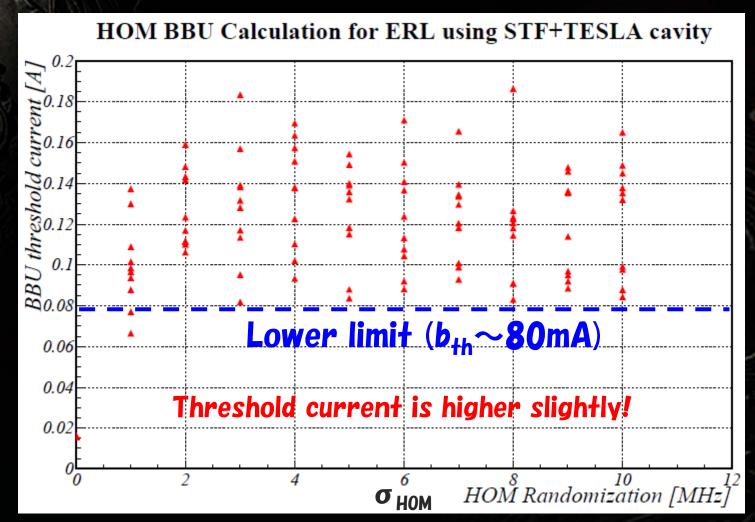
courtesy of Umemori-san

Result 1

At each Gaussian of σ_{HOM} , the calculation was iterated 10 times.

TESLA-like w/ TE-iris mode

If there is no TE-iris mode for TESLA-like cavity, BBU threshold current would achieve above 200mA!


20/0ct/2011

ERL 2011 @KEK

9

Result 2

BBU calculation was also done for wider range of σ_{HOM} .

Simple Evaluation Method

It is possible to evaluate simply the effect of BBU for each HOM by calculating $(R_t/Q)*Q_{ext}/f_{HOM}$. $(R_t/Q [\Omega/m^2]=(R/Q)*K^2)$

This method was introduced by Dr. M. Liepe at Cornell Univ.

TESLA-like

$ m f_{HOM} [GHz]$	R/Q [Ω]	$\mathbf{Q}_{\mathrm{ext}}$	$ m R_t/Q~[\Omega/m^2]$	$ m (R_t/Q)*Q_{ext}/f_{HOM} [\Omega/m^2/Hz]$
1.719	42.00	$4.370 x 10^3$	$5.457 \mathrm{x} 10^4$	0.139
1.878	25.40	$1.050 \mathrm{x} 10^5$	3.938×10^4	2.202
1.604	0.448	$3.840 \mathrm{x} 10^5$	$5.068 \mathrm{x} 10^2$	0.121
1.688	10.98	$1.450 \mathrm{x} 10^4$	$1.376 \mathrm{x} 10^4$	0.118
1.887	7.880	$2.150 \mathrm{x} 10^5$	$1.233 x 10^4$	1.405
1.895	0.400	$4.720 \mathrm{x} 10^5$	6.316×10^2	0.157

This value for TE-iris mode would be larger than TESLA!

20/0ct/2011

ERL 2011 @KEK

Simple Evaluation Method

KEK-ERL

$ m f_{HOM} [GHz]$	R/Q [Ω]	${f Q}_{ m ext}$	R_t/Q [Ω/m^2]	$(R_t/Q)*Q_{ext}/f_{HOM} [\Omega/m^2/Hz]$
4.011	4.542	$1.141 x 10^4$	$3.210 \mathrm{x} 10^4$	0.0913
1.856	48.32	$1.698 x 10^3$	7.311×10^4	0.0669
2.428	26.26	$1.689 x 10^3$	$6.800 \mathrm{x} 10^4$	0.0473 small
4.330	0.02186	$6.068 \mathrm{x} 10^5$	$1.800 \mathrm{x} 10^2$	0.0252 ver
3.002	0.8210	$2.999 x 10^4$	$3.250 \mathrm{x} 10^3$	0.0325
1.835	54.68	$1.101 x 10^3$	$8.087 x 10^4$	0.0485

TESLA

TE-iris mode

f _{HOM} [GHz]	R/Q [Ω]	Q _{ext}	R_t/Q [Ω/m^2]	$(R_t/Q)^*Q_{ext}/f_{HOM} [\Omega/m^2/Hz]$
2.575	81.72	$5.000 \mathrm{x} 10^4$	$2.380 \mathrm{x} 10^5$	4.621
1.875	56.99	$5.110 \mathrm{x} 10^4$	$8.800 \mathrm{x} 10^4$	2.398
1.865	42.54	$5.060 \mathrm{x} 10^4$	$6.500 \mathrm{x} 10^4$	1.764
1.881	11.58	$9.510 \mathrm{x} 10^4$	$1.800 \mathrm{x} 10^4$	0.910
1.887	1.28	$6.330 \mathrm{x} 10^5$	$2.000 \mathrm{x} 10^3$	0.671

Summary

In this work, BBU threshold current for TESLA-like cavity was evaluated in KEK-ERL using "bi".

- Using HOM randomization, the beam current of 60mA below 2.5MHz of σ_{HOM} was achieved. And, it was 80mA below 10MHz.
- TE-iris mode is the most dangerous for BBU.

20/0ct/2011 ERL 2011 @KEK Last